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(3)

where p is the pressure at the point r, t. The pressure i3 some given

function of the specific volume v (equal to the reciprocal of the density)

and the entropy St :X long as the notion is continuous and heat condition

is neglected ~= 0 and S will be a function only of the label r or m,
at

determined by the boundary coalitions ( a particle will only enter the field

of integration after it has crossed some boundary). The specific volume v

is given by the equation

(4)

The second$ or Eulerian, formulation of the hydrodynamical equations

regards as independent variables t and R,and as dependent variables the

velocity u, pressure p, density .
r

The equation of motion then takes the

form
*

while lkquation(4) is repl{icedby its time derivative, the equation of

continuity

(6)

b,~-~ charact~ri~tic~.——. . . . . .

llnclocal “sound velocity” at any point in the fluid is

c = Y&/ap}

—..——
(7)s

If an infinitesiraliyweak disturbance be superimposed on the main

motion of the fluid, this disturbance will spread in all directions from

any point with the local nomd”y~~~~~ty”~e~~~i”feto the fluid. A disturbance
. c * .. . .. : :.9. ● .

●. ●.* ● **9:0:**..
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.
b.1.2 One Dimension: Ri=+._~..ii=!’M6-Mo*.‘“ :“.— .—. S** ●***

The method of integr~t~c~g&sed: w~-tl&?:Euleri.anequations (s) and (6)

is essentially a generalization 01’the well-known rnethoaof integration

of the equations when k = 1, ( line), and when the pressure is a unique

function of the density (or tlieentropy is constant), developed by Riemann.

It will be useful to outline the theory here for later reference.

If we niultiplyBpation (6), with k = 1, by cf and add to ~quatj.on
P

(5) we find

a (U)

(where the lower limit,of integration is arbitra~) then we can write

Ikpaticn (10) in the form

il&’xtJ+(u+4 a(u+~=o
iiR

(12)

Similarlyj

+
a$.”d +(U-c) u- = o (13)

R

These equations state that along the characteristicswith slope

(u*c), (u*&) is constant. In some special cases (when pac~w and

K has certain values) these equations can be solved analytically and the

problem is reduced to the solution of ordinary di.i’fereni.ialequations

presented by the boundary conditions; generaliy,however, stepby-step

numerical integration is needed.

In such a numerical integration we do, in effect, regard u ACT as

the independent variables, froyc.wljj.~~u j..cm$~g.calcul.able,and R, t
● ● *. ea:

as the dependent variables. I&’is:mti5t~onkti.e~k to picture the steps
●. ●.. earn ● ** mom 88

of integration in the ( R, t) >~~e” @@d4 $dl.efi:thecharacteristicsform
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Nevertheless, it will @ “copgd.eujt●d-t~n=to think of
● **. ●**.● O*:. . .

the character-

istics as if they carried wi%% &e&% tl~-vO~u&%f some function, as u~e,

so tlkatthe physical conditions, velocity and pressure, at a point are

determined by the i.ntersbcticmof two particular characteristics. In

general,$he conditions at the point are dependent not only on the

particular characteristicsbut on the path followed by them, although

their ‘consecrationproperty’ is still true over infinitesimal distances.

A methcd of integration can indeed be devised which takes tlnesefactors

into acccunt, and tiJiSis the subject of Section 6.3 belw.

While this method is, irlsome ways, the most natural inasmuch as we

follow the pths of the signals that,determine the fluid motion, the

operations to wk~ch it leads are somewhat complex; in practice$theroforej

tl~eirnumber is restricted and the accuracy limited. The most useful

application will usually lie in exploratory work where the qualitative

feAtures of the motion are more important than the quantitative,

When, however, I.B.R. machines are available, greater accuracy is

obtainable with the same effort by a

relatively simple operations such a

the LagranSean ~~uations (s) and (4)

methcd which uses a large number of

one ia moat conveniently based on

and this is described in detail in

Section 6.4 below.Because,however, this integration follows paths diff-

erent from the characteristics,certainof the boundary conditions are

troublesome to handle, T%is forms a large part of the subject of the

fa:lowing Secticn 6*2.

These two methods represent somewhat extreme positions in the balance

between number and simplicity of operations. It seems, however, that an

intermediate type would be both too tedious for manual calculation and too

complax for the present scope of mechanical computations; though with the
●me ● 00*.**●*

W*S 9 ● * .9
:e

developrientof the laLter, the opttih~”weZl ‘4hi.~in this direction.
*S 9W*-.*9●** .****

There remains one very differq~~ Y&.Of%&n~~~j,n~:the partial clif-
f..-.*

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



it might be tki~t We Fres9ure gradient was nearly constant in 9pacel 30

nmerically-given functicms of the time. Tf Sl~Ch iS the .;4SF2‘HP TA2~ tl~j

system of ordinary ciifferenti~lequations,T1’eseequations noul’ibe suit-

able gveragm of the true equatiom , chosen$if convenient,ky 3 variational

might ozherwige ne expected from th<~ Ipproach.

6& EICXINI)ARY(XMiQ1’i’IUJS(S’kyrme)——- — . ..— - .—.

The boundary conditions I?eedecl to determine the so’~dtioricf cur

boorviedby charqcterlstic$ thrc’mwjhRI,R2. Tf we dcslre to exteti il-+e
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a c4-,J~tain value 01” the radius R, If we combine this information with that

supplieclby the characteristic coming ircw within the field of integration,

(1}
we can dt~termine the pressure at the point and thereby extend the field of

~~~–––—-’-”
— .—..—— — .-—., —— ...—-. —. — -—.—

Speaking rather loosely in the s&se mentioned - Section 6,$-4

—.. -. — —. .-.=—- .—. —.—...— —.. .... ....—..—— ...— . ....

integration to this point.

NOVJ suppoYe that Rl were the boundary point between two media and that

the motion

Now if the

Paragraphz

~i,-ieOf it

of the medium in~$lll is also

motion of this interface point

then we could at every instant

by integration frou that side.

being found by numerical integration.

were prescribed as in the preceding

determine the pressure on either

These pressures must be equal,

however, and this imposes one condition at every i.n.%antsu~i’icingto dtAer-

.mi.nethe unknown motion of the interface.

We have statecithis interface problem in a somewhat elaborate way as this

is the form in which it appears when we integrate along characteristicsto

find the field of velocity and j)ressureo As such it will be elaborated upon

in Section6,.~,But when we are integrating in I.+[:rangeanvariables to find R

as function of time and par~icle coordinate, an interface presents no di.f’ficu.lty.

So long as the accelerii~ionof the intert’acepoint.is properly related to the

pressure gradient,across the interlace, the boundary conditions look alter

,them9elve3. This will be touched upon a@n in Section b.4 It is clear from

this tha~ the latter method 01 integration is preferable wheu the problem

involve3 several interlaces,

The Iagrangeanmethod has however no such advantage when we deal with

shock wave boundaries, and the rest of this section deals with this problem.
●e? E.*●9

Let hs suppose that at time to a sh9~s~~~~@mov~@Qi~$he same outward dir-
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ectim as the + characteris~f$s~n~tis~ir~iti~$y at R-R~. For
● b

8 ●:0 :
e*●:* :.* *S

7ZT- — —— -——”————--—————— -— — —.-—.

definiteness
(2)

—. .-.—— -
(d)

If not, the motion of the fluid ahead may be cleterminedIirst and the
same argument then applies,

——-— ———--—=-—..—... —.-— ... . ..—.— ——.

let us suppose that the fluid ahead of the shock is at rest at constant pressure.

If now the vel..cityof’the shock, and therefore its path, were known as function

of time, then the pressure and material velocity behind the shock, being

functions of the shock velocity, would also be known. But thro,~ghevery point

of the path of the shock there passes a + characteristic coming fron within

the field of integration(3)which determines a relation between these quanti-

Gi-–----–”-’--”—-——–--——=—–”’”——————————— —
—.-—.

See end of Section b.1-2.

—-—— .C. . —.— ——... —--- —..—

ties, This provides information to determine the values of all quantities
p

at the shock as functions of time.

This is the principle followed when integrating along characteristics, and

it is elaborated in Section 4.3. When using the Lagrangean equations we

naturally do not wish to find the paths of characte~*isticsexplicitly.

Instead we shall relate the motion of the shock to the gradients of’pressure

and density behind it. In this wa;rwe leave a smll gap between the shock

path and the edge of the Iield of integration, and this is bridged by relations

derived from a ccxabinationpf shc>ckconditions with the ordinary hydrodynamic

equations. This is aiscussed i’urtherin the following subsections together

with related problems arising when the shock wave crosses an interface.

6.2-1 Conditions Acruss a Shock-Front.—- .—.—— .-—c c

When we are dealing with a sin.gie shock we shall use the following

notation. Pressure, specil”icvolume, sound vel~~city,material velocity,

● eo ● ● 09 ● ee 99.-w ● ● = - - ●. ..= .::.*O9 . .
9 . :.-.
=. ●:9 ● 9. 9*9 ● ** . .
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shock velocity are dengbed:b~:~,”~,~~,~fl~U and subscripts 1, 2 refer to the
$- . . . . . :.

low- and high-pressureD&d&~f t%e=~hd;k,respectively. Then ~, ~, ~ are

known functions of time and position and the Rankine-Hugoniot shock conditions

determine two relations between p2, V2, u (4)
2
f rirat the ener~ conservation

(4)
.— -——.

The equation is(l/2)(p2-tp~)(vl - v2) = E7E~where E denotes the internal
energy, a function of p and v. If we neglect the change of entropy across
the shock, p = P(v) is simply the adiabatic relation.

—. —— .—

determines

‘P(v2; pi, vljPa -

and the other conditions determine that

(U1-U2)2= (p2-p1)(v14Q

The shock velocity is related to these by the equations

—-—

u
d

P2-P1
=U+v

4

P2-P1
1 l=

=y+v .—*

‘L-vz
[i6)

Instead of shock velocity in space it is more convenient to consider the

velocity of the shock relative to the mass of the material divided by

—---—— ——.—
4TTR2, w =

12 4 (P2-PJ / (vi-@ (17)

’12
has then tne dimensions (density x veiocity). Analogously, it will

be convenient to introduce the acoustic impedances vi, defined by

The stability of the shock requires the condiiion

W1<W12<W2

APPROVED FOR PUBLIC RELEASE
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A very uaelki reka.~$o~Y~~Tdl~fi<~yI”+Sferentia%ing equation with
--- -* --=== =-w Q

respect to time along t;ie ~li of’th~’sfi%ck.If we denote such ciil’ferenti-

ation by the symbol d/dt, and divide this equation by (VL-V2) after

differentiation,we obtain

(uUL-.U2 ()

du~ du~ = dp2 dPL + (P2-P1 dvi dv>l
2— v -v

1 i~-~i X-X — )( —-Fj~“vl%? “dt

This may be rearranged and written in the form

where Xi denotes

x=
i

When the pressure is a unique function of clcns~.ty

(21)

the i- side of t}.e~ht>ck,

P

(22)

The expres8.ion(22)l’orXi may be transformsdin a number cf ways LIy

combination with the equations of moticm and continuii.y. Usir)gonly the

spatial derivatives of

~ intermediate fern which is u8eful is

rather than space derivatives we must

denote the entropy or some function of

()Vgi. y# (vi?!? ) 4u~vj 2
12\~Ri-T%2 (24)

to have time-derivatives (at constant rr~ssl,

introduce the entropy gradient. Let S

it, then we find

..* 9 - *
.=..9- .9.
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were A = (~ P~b vl)(dvl/dt) + (d P#b Pl)(dpl/dt) can be considered as

known; if conditions ahead of the shock are constant, A = O. Then ~uation

(24) may also be written as

We can also eliminate the
n .

*2 wf2
‘2=- (l+-q?- +~)

LLJ

$2

t

r

A

0,2-2 Shock Fittin&

When the integration

entropy gradient from ~uation (25)

is carried out by the method of Section 6.J!+in

Lagrange coordinates it is possible
(5)

to carry the integration across the

.———
T5)

—— -

First pointed out by von Neumann.

...— .——..— —..—

shock as if the motion were continuous, and it wili be shown in Section 6.5

that this is a j’ustitiableapproximation il”the shock is not too strong. Even,

however, when the approximation should be sufficiently good this process

introduces superponent oscillations which tend to obscure the detailed structure

of’the fluid motion behind the shock and which also make more difl’icu.ltthe

detection of errors.

Accordingly, methods of “shock fitt~. . . . %~.%.e.~een developed in which the.’ *...* -s

shock conditions are sa~isi)ieclcqfiecjl~”and t$fe&%h ~f the shock ises ●.m ●*9 9**● ** ■*
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@2/dt and (30)gives

at the next instant,

by using ttlepressure

-c-- .w-

d~~dt~”t~us”$%~”l~d~dthe values of R, v at the shock

Finally, the field is extended h complete the cycle

gradient calculated here to find the acceleration of

the particle at the edge of the field which is not otherwise determined by

the integration behind the shock. In application, the @uations (29) and

(30) are integrated to second Order accuracy, rather than to first order as

described above for simplicity of explanation, by determining V2 by trial

and error so that (29) inte~rates !!~ckward~l~correct to second Order. The

nwerical value actually used will be discussed in Section 6.4 in connection

with the intef:ration.

As time increases, the gap between shock and the adjacent particle will

increase, and we ri)u~t do more than just extend the field of integration to

this particle. This point is met by adding new particle-points in the gap

by suitable interpolationwhen the gap becomes too large.

When the fluid ahead of the shock is in motion, the principle is exactly

the same but the application is more tedious, because the pressure p2 is no

longer a function 01 the single variable V2 but depends also on the varying

quantities pl, VI, In the first place Xl # O and has to be calculated at

each step as follows. Suppose that the solution ahead of the shock is known

and that for some time to the v~lues of R> U1~ PID VlY U2~ P2Z V2 are known~

Then an{ilogouslyto [30) the shock

g&

(it ‘V1 ’12+

is known, and with it the position

this new position and time Ul, pl,

velocity

‘1 ( 33)

of the shock at the next instant, For

‘1
are already known and by differentiating

them with their values at a suitable earlier time we can deduce the values of
990w ●OW ●-* ●*●98 9 9

dulldt... at time to. Then Xl n@ b> ~alc~a~ed~a}co~i~ to fo~~~l~ (22)-
● . .** ● 9* ●:. :*9 9.

-< ‘:
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2 is a known function of ?a,va,We have calculated X~,and Wa l’here~z

fore, dvQ/dt may be evaluated and the cycle of operations ccmpleted Ju3 t

w before~ only when we have found Va,Vl,p%, at the next i.nst~nt we have
.

to calculate M from the en~rgy formula @4)0 The operations can be made

ccrrect to the second order as before, but with correspond ngly more effort.

In applieation tt may be more convenient to parfcavathe inte~ration

both sides cf the shock, although of course at each step
,

ahea~ Of the shcck first.. This latter integra~ion can be

ord!nar~ eq:.at%cnsover the gap between tie shock md

the edge of the field j no additional information is needed bemuse Lhe

shock runs into the characteristicsahead of the shock.

When a shock-wave crosses an interface between two different media,

a disturbance will, in geserale be reflected back into the first medium

and there will be a sudden chan~e of pressure beh:wl Che shock. These

rag~d changes over shcrt distances cannot be hanjled very satisfactorily

by the integration process. Tf the shock is being treated by the approx-

imate method describe4 In secticn 6.5 this 4oe9 not matter much, bu~ if

MI? shock 3s be!ng Lreated as a discontfntiityby a process such as that

described in the last sec:i~n,l.]ndesjrable fluctuation w511 be introduced

unless some w,qyis IJsed of flett:ngaway from the refljonof very rapid

cha~ge.

The ?nithodadopted has been to use an amlytic expansion for Lines

and p~sitt~ns close to the instant the ~~Oo@ c~+q$~pg.kheinterface, and. ,==== :: :==

this will now be described.

back into the first medium!
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I

Incident
shcck l----+

t?
R

Figure 3

Region O is that ahi?a’1 of the incident shock,,1 is behind the incident
,!

meci~a between the reflected and transmitted shccks, and 4 is ahead of

‘thetransmitted shock, J.’heSolut.icmwill be known in 0,1,4~ now the

prcblem is to f’~ndan analytic ex:ansion for regions 2

Since pressure and velocity are continuous across

It wjll be convenie~t to Cleterxirwfirst the values of

at the interface, When these have been found, it is easy to rieterrir.eLhe

values of all other quantities and their derivatives from the hydrodynamical

equations in the ho regions.

F3rst, to deter~ine p,u we must use the E$uations .(lgknd~l~)across

the reflected and trarmmittd shocks, Sine@ U1p~VIF %P4V4 are kncwn

thessewill determine two relations between the values of p,u at the inter-

face. As x Increases so does ~ and the relation between p,u so deter-

mined may be represented by the curve T in the F- f+. Similarly
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/ 3

F

/
I

Transmitted

Incident *
ghock

Y

4--

R

Shock

Figure 5

The boundaries of regions F and 1 and F and 2 are characteristics,having

injtially the slopes (U1-Cl) and (u~-%? ,regpectively@ and all the charac-

:erI.9t~cS of’ Lhis system in F pass thro~gh Lhe a?ex A.

‘Thecon,iition that determines U=,pa and provides the continuation

downwartisof the curve R in Figure L, is I

Ua +68 =u~ +al (34}

where o_is RierrannBs function (see se~tion 6.1-3) taken at the entropy S,

which is Ilmchangedthrough F,

~en U2 ,p2,V2have been determined we mY determine fb d~ t), ( &P/ii t ~

st the int.prfacein a way similar to that used when there is a reflected

shack” The JQuations (33) are replaced by

v“a = r,
&

X*=L
(36)

Here Y is a“cer~in function of the derivatives of u,p, that is con-

The expression

for Y TXIYbe written as . ..0● .0= ●O* ●9
. ---- -::,. -, , .. . -* - -. ---- -.=.:9● .* ●.. ● **-*

----
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ati $Z(x) = 2(U p++, + (v M/ae)ic+/d5)L4 s +/!1

Here H(v) is defined by the equation

(46)

INTEGRATION AWN(I CHARANER.ISTICS (Skyrme).— —. . —..

As has been stated in %ctlon 6.1-4, the .-neralization of the Riemann

mthod of integration to three=dimensional problmm does not lead to a

very satisfactory meticd of integration. Nevertheless, when mechanized

calculation la not availables it seem the easiest to we. For this

mason we shall describe in some detiil the

In the tAree-dimen8ional case ~uation

term, bscodng

handling of the equations.

(10) contains an additional

NW the PreSSUrS iS a tiction of the de~ity ~ ad the entropy.

In the most usual type of problem &he entropy of a particle is constant

‘6) and,therefore, if we differentlate along a stream-throughc@ the motion
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may :X rianclledby two ciifferentways, In the former, we regard t a9 an inc!e-

pendent. variable ad follow the cttaracterist,lcs at succesive values of t,

Th:s 5.sdiscussed further in Section 6,3-2.

stiit,edto the proklec,

numerical ifite~rat~on.it is often desirable to transform them sl!~ht.ly.

E7u3tions(49)and(51} for the paths of the charact,erigti,cscannot profitably

..=●-
●*. ---. ●.---- * = *

-“. = . : ...
.- .
. ---

●.* *--
.=2 . -=

*-

. .
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s= ● 0

.-*
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---

---- . . . -.. * c

:= 899 ● ** ● ** ● . . ● .
be altered, but the other tw~ y$~ b> trjn~fo~fci along

. . ● 9... .
lines..

. .:*:0.**
one of the following

(52)

First, in the special case when the entropy is constant and p is a

unique function ofp , one may introduce Riemannls function& instead of p

as dependent variable

J

P
6= ~P/p c

and then (4S)or(50) become

d(u~cr)/dt s ~ 2uc/R (5$)

h%en when the pressure is not a unique function of density, it may be

desirable to introduce some dunction f(p) 8uch that (>c)(df/dp) is more

nearly constant than> C* Inmost @yslcaA problems the value of y=p/}c2

is nearly constant. This suggest,sthat we divide the equations through by

c and introduce log p as dependent variable.

l/c(du/dt)+-~ p/>c2(d log p/dt)~=; 2u/R (54)

This form is useful if c does not vary widely over the intervals desired.

On the right-hand side of’ both these last equations we may replace u/R by

use of the equations of’the characteristic paths,

u/R =
7“C)

(d log R/dt.)$ (55 ]

In some such way we shall transform these equations into a form

A(du/dt)~ *B(d f(p)/dt)t =T C=~ D(d logR/dt)~ (56)

such that the coefl”iceintsA, B and C or D vary as little as possible over

the intervals desirable. If this equation be integrated over an interval

the f characteristicwe shall obtain

denotes the change in the value bf f over

R) (57)

this interval and ~, ~...

averages must be replaced
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the new Lime t~z when we have found the positim 7 of Lhe interface, we ex -

trapolate the val-.~es of Au#f(p) from the left and Au-9f(p) fro,nthe ~,t

(tinevalues of A,9 and the form of f(p) nay, of course, he quite dif~erent

on the two slde3 of ths int.,erface),The only problem rema;ning Is that of

the continuation of characteristics that cross th~ interf’aceje~ther we ,may

interpolate to find the time at wh~ch the sjpn;~lcrosses the ~nierface ar~i

the new value of the slope of tht’ch:~r%cteristics and then treat this char-

acteristic spec~ally for the subsequent int~rval (because the Lime interval.

is not the normal one), or we may drcp th~ characteri$i,ic whqn it crosses

the interface and intrcduce a new one on the appropriate side ~tayLing from

the interface at me of the chosen Li:r@3t,.
A

The progre.39of a shock boundary ~s treated 3.imil.mly, ‘TheSLOCK

p~th IS found by integration

(dR/dt)fl~ock=-

wnere U, the shock velocity~

of

u ( 64)

%3-3 Second Method of Integration..— —.’—---- =-—.-..—.A
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(65)

bo]nded by characteristics. i?itis,i: U,e next pcints

ckaaracteris tics khrou~~!] a point P are Q,12respectively,

values or Lhe Variaoles at hhe intersection S of the other

characteristics throligh Q.R ( See Figure 6 ), ther as first approximate.cn
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Figure 6,

It has been. SCMn#convenient in some ca~es, where the variations of mater-

ial velocity u are gre,zterLban those of sound velocity c, to proceed by

assum~.n~a value of u at~ ( j.nfirst approximation given by (66)), and cor-

recting this untl.1 the values of the pre,ssure determined by inte~ration along

either characteristic become equal.

(2) Boundaries

The treatment of interfaces and shock boundaries is rather trouble-

some by this methcd, Since we cannot carry characteristicsacross an inter-

face fn one stepwe must always arr”~ngethat ohe’of our intersection points

Q’iMe at the interfacewhenever a characteristic crosses it. Suppose that

the po~nt P of Figure 7 Mes

%3 crassm the interface before

on the interface and that the + characteristic

QS.

Figure 7

The position of the intersect~on T of this characteristicwith Lhe icterface

may be determined as for the intersection of two characteristics:nat we have

to (ieterm~nea point Q’ on the + cha~actwistic FQ such tk]t Lhe - character-

~stic thro~gh ~$ pass also through l?. .n~h~op~~nt’~f &&~;~en be treacecl 4s m
9- w .

--- ● *
IntersectIon of characteristics throug~eR;& “f;~.”e-~SI~lway..’no prccedure

● D. . ,ge

e::”

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



pcwi.ticn G)’ and the values of the variables thereat can easily be obta~ned

from th~ l’U?7i,Ula~used in Section 6,3-S(1)

Shock boundaries are r3ther easier to handle, Suppose that ~.n

the Figure 7 P lies on the shock and that PT is the path of the .sl]ock*

Suppoee we asscme a value cf the shock velocity U at T;fihenthe rwt.erial

velocity and sound velccitiyare determined simultaneously. We can now de-

termine the posit~cn of T ~.nthe usu~l.way (correct to second-order) arid

integration along ?U gives a relati.cnbetween U$p that mst be mtisfied at

T. The value of U assumed must then he corrected so that this re~tion is

tr~e at T’.

6.4-1 Analvtic Form of the ~:G_4_.*_qat~c”s-.4.’-..-..-&.—.. -.—

In the preced?ng sections of t+is chapter, the hydrrxiyn,mnicalequat~on

antimethods for its soluticn are discussed. The numfrical rnethd’sget the

sohticm by integrating step-by-step, frnm one interval to the next, Trieach

int,euration step they invGlve an appreciable number Gf elRWntary ca~cuhtiens,

If a det.ajleipicture of the fluid moticm ia required, small intervals must be

used; then there will be a large number of integration steps and an enormous

number cf el~mentary operations--cf the order of a few hundred thousand. Such

a larCe number of operat.~ons makes the doing of mreria sirgle problem on an

ordinary calculatim machine almost prohibitive. If several problems are to

be solved, it becones necessary tc~thox’cntighlymechanize the method of golution.

In this section a method is described in whjch the routine operations are done

----
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a wrt~ ~ differefitia~eqwtion with two independent
.,_e .

variables, r and t,

($7)

Here as iri

syrmetry,

the radius

uration of

9ection 6.3 the problem is restriced to the case of spherical

‘l%ecoordir~te r identifiec3a spherical shell of material, it is

of the spherical shell when the material is in a standard config-

~
uniform density, , R is the actual radius mttime t of this

vu

spherical shell, p is the presrmre.

9tate, of tl)e9pecific volume, v, and

3
v=v~R

0 ar3

It is a knowrifunction, the equatj.onof

of the entropy S . A1.so,we have.

($$)

Conducticm of heat is neglected; therefore, so long as the motion is continuous,

the entrow of a uterial particle does not change,~= 0. What hsppens at s

discontinuity is discussed in Sectitin6.4-5.

b,L-2 Jlifference~o~of tlJe~uaticw*.—

A solution to the problem is the obtaining of the actua~ radius R, of the

spherical shells identified by the coordinate r for all times t, of interest.

In the nwnerical solution, R 3.scalculated for a discrete set of values & r

and t. These values of r are labeled by an index i, which will be used as a

subscript; the values of t are labeled by an index n, which will be used as

superscript. Thus the radius of spherical shell i at time n is R~, ‘The

derivatives in E@ations( 37kmd(6$) are approximated as finite differenc~

expressions,

a
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(R:)3 - (R:-])3
V;-4 = ‘o ——...— ..—

A r3

(72 )

The {~ifferencc$equation represents t}ledifferential equat,ione~ctly

only in the liriit.as Qr and A t go to zero. siIiccfinite intervals are used

iritht’numerical calculation, errors are made. These errors can be studied

by expanding significant quantities in power series.

Ri
2=..-ti

(At)z =(j$y++(&)@2+.*..’......**....e...*.
Thus the difference equation (@represents a 22

.~:.ey::y:~ at ‘tie o a;~ P~nt
i with m error projwrLioml to ~ 2“.“:9=

w
.

H
- If >-tw@<-u&< to represent at

.= .. .:.... ..* ● ** ●* t
any otkierpoi.rlt within tile int,erval n +.1 ~d.am%=l,:$hy~error wo~d conti~~ ,,.,

~ ‘*’;
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terrs proportional to ~t%=- ‘E@s~wv&3@.*o~”~f tt.~ derivat, ive at. tti,,m~ dpGint
=.. -e. co”
=G. m ● .@

of the interval over w}Iich “ti~~%?fer~nc~%s~l-”etaken Ss d led a cer:t, ral

difference. In tk,e absence of specific irlforrrationconcerl]ln[;the },~gher

derivatives of a I’ur,ction,it is best, For this reason t}x specific volume

obtained by the

is the fiidpoint

~imtlarly,

)

n
;’& =

\,brj ~

differencing prccess in Equaticm(T3] is labeled v? ~, :..-~
-d

of the ir;tervalbetween i and i-l.

the ot,l,erderivativtiin Eq~Iation(67)has t}leexpansion

9et Of differerJcef3CJ\i~tiOK_i:i. v is calculated from a difference ‘~;;~at,im(75],

whidJ has an error

n

If ttieabove expression fw U is rxx!ifiedto incluc!e th~s ef’feetit hcrmes
dr~ ~

—1 R

n
Here p~+h and p

rl
i-h

are interpreted as calculate! from v. and Vn W!:3C}.are
1+~ i.-~’

tc,the finite size of the interv<ils,by t}.e fcilowin~

wilj be in error, owing

tullc,ur.t;
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b.~-? .%ze cf Intervals an”@”Stib;li&P t{G*&lution..—-. ._— ___ _,._ _ —. .-..—

The iutervals in r and t rwlst,be ct-,osensm.]1 enoup;hto make the errcr

term (74)rie@i~;ible.In r this means Lliattiiere must, bc.encugt,points tc give

a gocd del”~n~l.ic~r~01’p, ‘Ther,ur;herof p~int.,sr:eecedin a given secticjnof

material my ck,angeauring tl.e c~lurseof’a pr,.jbierr,,for ttlepressure distribut-

ion may cklanReradically in that.time. How t,t:einLerval.ssltcuidbe distributed

in r will de~>enr!Oii t}.e expected pressure distribution. If the pressure is

ap~}ro~.imd.t.elya Linear S’unct,iGnOJ ttjcmass of ri,attirid., as is ttJecase in ttle

early stages of a blast wav~ in air, tile .interval.s are best chcser. equally

spaced in r~e Then,t,oo,tl,eeX.pcctcderrors will be the least in tke central

dii’1’ereficeformulas, In cdJV3r prok.,e~(sp is a slom’.lyvaryirl~function of’

r and a r{ipicllyvaryit]~I’unctrion01 rj. There it is be-.te~to u:,(Iintervals

equaily spwed in r itse~f. Thcz cer.trtil difj”erence accuracy could be maintained

if v were calculate! by t}~efoliowirl~formula instead of (73),

However, the use of Lhis :’omula wmld greatly cor’npljcatetl]eprocedure.

~lftertbli!

The discl.ssion

chcsen so Lhdt

intervals in r ~re chcsen$ at cannot be chosen independently,

of’cl~aracterist.icsin Sscti.on0.1-2 predicts n t should be

Rr]+]“Lieswi.tl.inthe ckxuiinbounded by the characteristics

()~‘i’hismeans tliatA t Should be less than ~

‘2’’.J+%

i

tt!rcughR*) and R: “
i.+] I-J

If at is larger t,lkm

ir~fcrri.atioriwiti.i!~the

t,hisquantity, Rntl cannc.tcorrectly be .Ltained from
i.

i.nt,e;.vali + 1 &ridi - 1; at time n,that is, the

-“ ““
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Volums..

‘l!hecorresponding calculated pressures are also in error.

If

at

these quantities are substitlited into (’Tl)@an jncorrect value of r,he radius

time n + 1 will be Calculated.

The ccrrect formula for this

-1

radius is

Hence the error is

~n-+1‘
i -R~l=26

L -1

choice

—-
.,
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is + 6 L. The propagation of these errors is shown in the following chart

in wi]~~}i an error 1 was mde in point i at cycle n, In constructing this

chart it has been assuued that L does not vary significantly from one point

to the next.. This is true if the pressure does not change much in one

interval. The error madtiin the radius of point i at time n spreads to

other points. If L>lj the error will spread one point per cycle. If L<l,

it will initially spread one point per cycle but quickly will become attenu-

ated and move with the speed of sound.

—. ...— -.— ——.. ——.-—. Z...—..—Z —.—.
i-2 i-L

—.—
i ZI i+2

n-l 0 0 0 0 0

n () 0 1 0 0

n+l 0 +L 2(1-L) +L 0- :-

n+2
~2 -4+*L 0L2=8L+3 -4112WL L2

—- ——..-—..—— .——-. -— ——,— ...—... —.—.. —-.-..— .—

T%e error in a given point oscil.laten in ti<me. 11 L>l, the amplitude

of the oscillation will ~;ruwbeyond bound, If L<lt the amplitude of the

oscillation will remain bounded. The sum of th~ errors in the raaii of the

points a?. any cycle is independent of’ ~ and is equal to the ma{;nitude of the

error times the number oi cycles since the

In any calcblat,ion,onr~tries to have

errors w}lich are inherent in any numrical

error was made,

it free lrom mistakes. But there are

computation. These are roundi~
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At < _ibK._
‘.’2~

This restriction means that if Q r is made ~~.smd.lto secure spatial detail in

L}le SOIUti,On$ At must be made correspondingly small.

n.4+~r~&ement o~the Commutation Ste~.....——

The dii’l”erenceequution(~i.)is the basis for tilenumerical work. It ex-

presses t,heradius of a point at a time n + 1 in terms of its radius at times

n anfl n-l w-xi the pressure distribution at time n. Equations and (73)

ex;mess the ~ressure at time n in terms of radii.at time n. This suggests as

a procedure of c;~lculfitionto caleuJate fr~ the radii at time n the pressure

distribution at time n and then illgertit i.nto(71)for the c~culatiori of the

radii at time n + 1. This set of operations can be repeated to give the radii

at time n + 2 and so on, giving rise to a cyclic procedure.

In l%~uation(7’2~,thepressure p is given as a function of two variables,

v and S, This function is usually so complicated that it is impractical.to

compute the pressure frativ and S each time it is needed. If a table of p as

a function of v and S is ccmstructed, it would conkain one entry for each pair

of values of v and Se In most problems the range of v(and S is so great and

consequently, the number of table entries needed is so large, that this is

also an impractical procedure. However, it has been found that mamy equations

of state can be aclequatdy approximated by a foruiwhich requires only a single

entry table and a simple calcuhtion, This form iS

-- . ..—. . .. .
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. 3 digit ~. In the problems we solved, we used a 5 digit X . v~ue~ of
a a

Fl and F2and their first differences to the first 3 digits of ~were read

out of a tabie,and the values of F1 and F2 corresponding to the 5 digit ~
a

were obtained by linear interpolation.

One.I.B.M. card is used to represent each material point. The collection

of cards representin~ all the materihl points at a

tiledeck belongin~ to cycle n. Tne computation of

the pressure distribution at.time n is done on the

definite time n is called

the radius at time n and

deck of cards of cycle n,

The most efficient arrangement of the elementary operations within a

cycle depends on the I.B.M. machines available. The procedure at Los Al~g

was developed on the btisisof triple product multipliers and the tabulator-

mmmary punch combination (see Chapter l). Tne triple product multipliers

compute the expressions A x B x C or A x (B ~ 2) in one run of the cards through

the machine. These machinea reduced significantly the number of operations and

the number of card columns needed in a cycle compared to an arrangement using

ordinary multipliers. The tabulator-summary punch combination was used to list

the data for cycle n, to difference a few quantities, and to transfer to a new

deck of cafis the data necessary for the computations in cycle n +1.

Each I.B.Il.card, which represents a definite material point, has punched

on it the numbers necessary to peri’ormthe calculations for this point. Soue

of the quantities depend only on the coordinate r, or the index i, and hence

for a given potntj do not change in t.lme. They are, in addjtion to the identi-

fication of the card, the quantities vo(~t)< , V.

r2N
i

~-~ (Ar~) ~~j
andhi-i’ ‘hey

are called rates.
. ●9W ●

●S* *OO●B—.

● *6**.. ●
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n-1 n-1
pi-~ - Pi+j ! TIJe sign of dp

Tho computation is arranged in the following series of operatims:

1)

2)

3)

f+)

5)

b)

7)

El}

9)

10)

n)

12)

vo(A.t)2
Triple multiplication: ~ ()

2
n-1
Iii

A

Multiplication and addition:

%
= (2R~1 - R~2) +

Triple MUlti~JliCdtiOn: (R;)3

Transfer of R3 of point i-l to

Addition and multiplication:

()

n
~ ‘J’O

ai -)!.= ai_~‘ars) i-~

card i by the reproducer.

[(~p+,-l)’l
?mrt cards into ascending order on first 2 diEits of K ,

a

Mergine in c~l.laterwork c~rds with table cards bearing Fl and F2.

Multiplication: Interpolate F1.

Multiplication: Interpolate F2.

Sc)rt out table cmds.

!.lul.t,ipl.ic~tionand addition: pn , = Fl + b
i-~ i-*F2

Tabulator and Surmury ~UI)Ch: List data from cycle n, transfer identification

and rates to new deck in summary punch, compute 2R~ - R~l and dp~ and punch
3

on new.deck.

A detailed discussion 01”each operation is ~iven in b,4-7.

~. 4-fi Boundary Conditions.

The set-up just described is a procedure for the calculation of R~l

frOm R:, R~+l, and R; ~,,R~”l: i.e., it’the radii of all points are given
●9* 8 ●9* 9.9●*

at times n and n-l, the radii ~~:t~s~.points a~~ calculated at later times
● . . .
.. .:.... .:.:.*.9

dK@aM ’*.conditions, the radii at time ? Ciiffemrlc% equat.i:’n cm not by
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themselves correspond to a unique,&~~$~:~iO.~i&y$~~on, and hence do not have
V**** ::

a unique solution, They must be*l&~~~~len&d?~y~~her conditions, boundary
●0s ●.

conditions. The boundary conditions are conditions imposed at two material

points, two value9 of’r. They wili be difrerent for different physical

problems. Here they will be described f’or ii definite problem, a spherical

blast wave in air.

One of the conditions is imposed at the center of the blast. The material

point which was or~,ginallyat the center rernain~there: i.e., the point with

coordinate r = G has the same radius, R = O for all times. This condition

is easily worked into the machine proceaure. The radius of the poixit,r s U,

directly affects the calculation of other points on.L.yin the computation of

v for the point yith next larger r. Since in tne caAcuiation the c~bes 01 the

radii are subtracted lrom the cube 01 the raclius of the lirst point W~th nun-

zero r, it is ordy necessary to have no I.ROM. card repre~~entingthe point

r = O. Then the zero will automatically get transl’erred(in operation 4), as

the radius cubed of the point r x 0, to the next card.

The other boundary condition is that tl]ereis an outgci]lgspkiericd

shock wave. At this shock wave tilepressure, denaity~ and material velcmit.y

change discontinuously. The derivative of the presmme, ~ , does not

exiA -acrossthe shock; hence,the parti~ dix’f’erent,i;ll equat.icu] cannot be

used to cor~tintiethe ~oiuticm across t})eshock frorit. Boundary conditions

must be ajjpliedt? co]uiectthe soluticn on one side with tilesolution on the

other side. These boundary condibion”s,which are derived Irom cmsc:rvatioil

laws, are the Hugoniot relations discussed ir 0.2-1.

The state of tlif:system out.sid.etkie shcc]:wave is that the air is at

rest at normal pressure, density ad entropy. Wlx3nthe 5hcck wave E.itsa
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changes some energy is transformed into heat, givi]~grise to a change in

entropy of the air, The shock moves with respect to tilen~terial; hence it~

pcmiti.cn,rs,lsa function of tiletime,Since a point has not moved from i.t.s

original position at the tim the shock lkitit, its actual radius Rs is the

same as its label coordinate rs$ R8 = r8, and r~ is a function of cnly one

independent variable, the time, t.

The Hugoniot relations are:

velocity of the shock

IP~-P()w.,————=
v -v

J ‘o

material velocity

u
()

z~=
s

9

the change in intm’nd

s

4 (PS-FO) (vo-~,)

energy produced by the shock

The internal. energy$ E, and the pressure, p,

If these functions are substituted into (SO

(79)

(-80)

ar(; known f’uncticnsof v and S.

there resli~.tsan equation relatir.g

the entropy in the. shock to the specific volme in the shock V3, This equoticn

can be solved (numerically,if necessary) for the entropy in terms of v and
3

this result substituted intc the equaticn of state p = p(v,S). The resultant

functicn in v~ alrne is called ~,

P(V#+ )Y(VJ (81)
99* ● ● 98 9=* .*

.’.

If~(V~) is used - : ● ● ~ ‘1in(78]●nd :(7*)~ @ .~a~ ~een eliminated from the necessary
●* ●m. 99...W ● O-=0

relation8, which now become $*+ 7-- .=” : : ...J** ->
>-?-~ # -*U* s–, 7.,1
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(82)

(84)

partial di.fffmmtial equatim] were kflGWIi,

these IlpuAions (S2), (83), and (84) could be u8ed to eljminate the arbitrary

constal~tsiIIit and to locate the position of the SliOCk. The stilut.icmdescrib@

here is a numerical solution and it is difficult to use these relaticns alone,

if ariysort of accuracy is nef~ded, ‘Tcsupplement thm tklenit has been con-.

dpr~
venimt to derive frcm t}mm expressions fcr

# ‘dd~
.(See 6,]-2).

These expressions are:

d% dvs

*= -&73%-- (W2-Y?)

These fmmiulas, the Hugonic.,trelations and their tirr.ederivative8J form

a practical

formula for

respect, it

however, it.

basis for fitting t}m boundary conditions at the shock front. The
dv
&, [~~))C011tair13f’ir$L8&ceder~vativesof p, v, Intiat

is of tilesmie order aa th6 partial differential equation, Hers,

is not possible to l~secentral difference forrimlastc)approximate

to the derivatives. The quantities v and p are discohtinucms at the shock and

hence two values a fitlite distance apart and equidistant from t}loshclckfront

cannot approx.imte to the derivao%+vw.*:Thc$e ~f%%-enee formulas, less accurate
s..: =::..

than those in the body of the ca,m&t.~~ms:w ‘“-‘“-

●. ● w* 999 ● ●

..* .90 9 9 ● .W.

. ● 9 w ● ● =- 9
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av z ‘22kd_,r ‘S-ri-i
are used, (i is here the

The quantities to be

●y’::++*
●.

● ● m.
. ● o:
909 ● *O : :‘OIG._&i-p-● OC
*

: ‘Lf=ri+” :“-:
● ☛☛ ● ● ✎☛ ● ✎☛

ra$
●

●

● :
●

pblritnearest the shock,)

( 8ii0

obtained from the applicsti.onof the shock conditions

are the position of the shock and of the mass point, i, nearest to the shock.

To calculate the position of point i, the difi’erenceequations used except

that (=) is used to approximate ~. Here as in the computation of !& a
ar

smail error is made because of tl]efailure to use a central difference formula.

The procedure used illcomputing the &siti.on of the shock is so complicated

that it is impractical to use I.B.M. machinea for it, but it can be done satis-

factorily with an ordinary calculating machine, The steps in the calculation

can be arranged on a cc~mputationsheet so tliat the time required to work out a

cycle on it is of the mm cinderof magnitude as the time for the machir~ecycle.

If one person does the hand calculations and one person operates the machines,

the tim of a cycle need n(j~be significantly increased.

With (87) expressing the accderation of the shock, the position of tk,e

shock could

However, in

as position

be calculated Ircm the second difference formula

this form an error in rs at one cycle affects the velocity as well

in later cycles, and hence it my give rise to long period oscil-

kt.ions. The sit~.ation here is more serious than in the solution of Hkpmtion

(’71)sfor the shock pressure and velc)city are more sensitive tc the pressure

difference than the corresponding quanti.Lies for a meterial point. Consequently

the oscillations produced by an error may be of lcnger period and larger ampli-

tade. A more stable formula is

If this equation is

● ✘ *W8 .00 8 m ●. J
.s - ---

“-
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y:~
● *m.

a,, ● : ● me
==. ● *m ● **:
. . .** ● *** *.*

error in the vel~city of the S&X& ad JJQW $~ is more quickly lrcorrect. edl’
3**.*. . .

● ,s. .

by the pressure differences.“.:.~c~ :
●.*

d2r~ dr~
In the calculation of ~ and

- r’

the results of the machine calculation at

●0;;
●
● ::
● *m ● *

dv~
v~, and ~ are needed. If v~ and

dv~
that cycle are known, — c&n be

dt .

computed from ~uation (~). To get ~ it is

() .()

dv n-i‘Vs ‘i is needed, To calculate +,
but r

The best procedure is to use the formula

.

()dv~}n-lnot arcurate enough to use —
dt

n-idirectly v~ would be needed,

and an iteration method. v; is guessed

v: is calculated and this value used to

is continued (it is rapidly convergent)

formulas as was put into tham.

()dv~ n
and — is computed. TharI a new

dt

()

dv n
compute a new & ● This pI.OCeSS

until the same H is obtained from the

A computation sheet can be set up which provides space for t)m computing

of the various elements of the formulas and the combination of these clerxmts

intc tk,edesired

a form such that

on a calculating

quantitttis. Each item on the computation sheet should be in

its computation requires only performing a single operation

mackdne or looking up the item in a table, with a possible

linear interpolation. By a single operation on a calculat.i!lgmachine is meant

a computation in which no intermediate writing down of a number is needed, e.g.,

a(b + c)/d.

The pressure table is often made up wit!;the specific volume normalized

so that the noruial s~cific volume is 1, instead of Vo. The fcllowing sample

computation sheet was nide up on the basis of this normalization. It is also
J

assumed that th~ points are chosen equally spaced in r.

1. cycle: n

2. point nearest the chock: i ●CC .
●*m ● 9* .9

.’9 . - . .0

:9=?

3. r~sr5
2

-1+ -& & (~{ ~.w%:i.(~t
lC ‘Q (Q*] )
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4* ~ ~ = ~ - ~-~. This’item is for cheoking purposes only.

value of ~ p indicates an error in @.
8

59 b=+. q:$. ~ is the value of’r for the point which at
s

Jumps in the

cycle n i~

nearest the shock.

6.
()

~ “ =Y”
from I.B.M. I.lsting.

a id i-~

7* frcm I,B.M. Usting.
‘:-4

8,
~ {Xp

t-+ *
/)

(’~

~’)i”~ (a ~-h” It~’l
- 8 are indepencieritof the iteration

procedure used in computing v:.

90 + (guess).

10* ; n from table.

A.
12, An =1-+

s

13. (V?y ‘( ‘- PO)/An

U+* e = f (VF)2. (This IF differs Yrcm the one delined in (%) by a factor

16 ● N=

17. P =

n
(b’

n
r

s

/

● 9 ● 9* .eq w .
. . . .“9899 .=.

. ...-”
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h
If ittan19 is not the same w, itxm.3,,&w Y% shouldbe guessedand steps--- .. . .=. ..-.
9 - 19 repeated.

fie.-: . . . : ::_——.--= w.--*WW*

29. P = Vo(p-n . Q ///j

Card 2

item a, is

to tke deck

2q. R~l + (A t)2 B* (Implosion)

is kept out of machineoperations1 and 2. Its R, coniputed in

hand punchedinto the appropriatecolumnsand the card is released

beforeoperation3.

Since the shockmoveswith

everyfew cyclesand then a new

The time t*, at whichthe shock

1(MP)2v#h-1

respectto the material,it passesa new point

cardmust be addedto the machinecalculations.

wave hitsthe new pointis determinedby inter-

polation. In thisinterpolation@’ and consequentlyv~l are needed;hence

theseqwmtities at time n+ 1 must be calculated.The shockspecificvolume

at timet*, W$ is alcul.atedby linearinterpolation.Z* and U* are obtained

from-. The assumptionis made that in the time I’romcyclen to t++, the

accelerationof a masa pointat the shockfrcnthas not changed,signif@antly,

so IF is used* The R at cyclen + 1 of the new pointis gottenby expanding

it in a power series

needed,~an iteration

is used in gettinga

in timeaboutt*. Sincein a precisecalculationof

and to calculatevfl~ the positionor Lhe new pointis

methodmust be used. The first~1 used is the guessed

the new R ia caic~ated,-l is calculated,by hand and
1+*

new P+]. The processis rtipeateduntili-thas ccmverged.
8

24. r~l from previously

Tf rn+~ is lessthan
8

is greaterthan r~+j,the

preparedtableox the positions01’the points.

~n items25-49neednot be comput&.
41’

If TJ

shock-~:s..Qi~po@..+ ?.1 betweencyclesn and n + 1,
. . . .-=
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27.

2U.

29●

w.

31*

32

330

34.

35.

36.

37 ●

x.

~ (r;:! - rn
+~.m:!:::::

‘2 i+l)M J ~“~’- t>~~”hfidt~eraiprotimationto the tima

the shockhit pointi+l.

tM=tJ(2At & -tl-t2)/foQt), t% is an averzi<eof t, and At-t2~

~ t-t, t,
with tl Welglitedby — and At-t2 by _ .

At
The l-actorsV. and v<

At V’

are tCJ NIM2ve the fiictC)r
< Va in tl + t2i ●

A t-t*

(At-t*) 2/2

(t*)2/2. .

[
w= v:

1
(~ t-t*) + V*l- t* /At

3

V fromt~l* .

(U*)2= fi(l-v-q / (~)

u+ =
r
(W)2, the velocityof pointi+l just afterit was hit by the

shock.

~n+l~ ~n
i+l

i+l + w (bt-*.”*)+ * (At.-t%)z#

Rn n
i+l.= ‘i*l-

W t%+ ~ (bt-t*)2Bn

()
~ from table
a i+l

()

~= (.375 q t J75U
()
“~

()
- 0125 L

a i+> ali+1 ai a i-l

quadraticintarpolaticm,

39●

*,i =(:)i+,(.i)i+,*(
Thisis punchedon c=d i + 1.

()
f$o.y++=v-% ~

a i+l

42. F2* = F2(yq frm table,

is punchedon cardi + 1.

.)!45.<Fq; 3
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sameas item7 of cyclen + 1.

sameas item8 of cyclen + 1.

6,4-6 Card__$.

If the nwnberof intervalsin r is chosenjust Lmge enoughto givea

good definitionof the pressurecurve,sevendigitsmust be used in R. The

numberof digitsin R determinesthe num@r of digitsin otherquantities:
.

eegg,thenv nmsthaval?d~#ti@ The columnsof the cardmust be apportioned

amongthe various~iuantitiasso that thereis spacefor aJl of them and so

that the columnsallotedto thosemumberapunchedby a multiplierare the

sameas the spacingsgivenby available

AU the numbersto be punchedon a

to occupymore than 80 columns. It was

skipbars,

cardduringa singlecyclewere found

thereforenecessary to use two cards

to represknteachpoint. TMa was accomplishedwithoutproducingan increase

in the ~imerequiredfor or the nunberof operationsin a cycle. Each cycle

uses two decksof cards. Deck 1 is used in operations1-4.

reproduceropertition,the necessarydata can be transferred

deck 2 without any essentialcomplication.Deck2 is used

4 on.

Sincek is a

fromdeck 1 to

from operation

The distributionof cardcolumnsis givenin the followingtable;

see 9 ● =. ● 90 ● =s=. . 9 - - - =
. . . . --=

~=e ● . . . . . . . .

a .-w - -
. . .:9... ● *9 . ...-9
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problem fJu,mber

Yme (cycle number)

17-23

24

f.,. ;..
X-punch :cr sign of CW

bhnk

-,
‘,,

X-punc}l tc control ghfft
in dechl of R3 ,

n-l
‘i

I

50-56
q-l)

b’lank
.51’

58

I
bI.ank

..

73-’/g

.

/- 0

..... .
.’, ,,, ,

I
.’ ,/’” . . ..-
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Qww!
l+

3-5

6-1o

U-15

17-23

24”30

31-35

36

37-42

43

44-49

w

51-57

58-65

66-72

73-79

~

Problemn~ber

Card number

Time (cyclenumber)

blank

blank

last 6 digitsof (R~)3

blank

last b digits of (R~l)3

blank

blank

hi-+

‘i2.
‘2

Form explanationof the X-punches,see the subsectionCZ,4-7.

The elementa~ operationswhich make up a cycle are listed in 6.4-4.

Herethey are describedin detailand plugboardwiringdiagramsare given.

Operation1 - Trt@e productmultiplier.R~-l is s(pued on the first

mtitiplicationcycleand (R~-1)2is multipliedby VO(4 t)a
on the second

~~ rmultiplicationcycle.1$-1 is read from columns42-48into the multiplier

and multiplicwdcountersjmd vo~ &

TAT
is readfrom columns73-78into the

munmarycounter. ... 9.9.-.The productof t~e ml~f~~$ati~ng~s”~;nchedinto COIWS
.e= .= ~ee w :--*;. -“.-... ...
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for some [Xlr’ls,k:eas lCW .395* This would res~lt in a r~al 10sso.faccuracy.

prcduc:s cwnter to Me multiplier counter. $1rlQ@,tg of R2 are wired into a

inte 8“NX”UUb9 of the selector{ the lef’thand H .L!-gitsare wiredinto the
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.90 ● 0

. .*

. +9

. ..-

. v.
.80 --

. . .
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1’
$

i

inLo cGiumns2 ?-42 0.~ de~:k 2 . tt,e bst 6 di~:its of this a.uantitwy are trans-
J

ferred from columns 37-42 of card i.-!- of deck 1 int.u SOIUDUE 44-49 of card “ : :“ ‘~f.,i, ,.-,
,,,.

i of deck 2. Tn a~rier for Lhis operation to be perfcmwl, cad i-1 must ‘:,

precede car i Lhrougil the reprodllcer. Cn the other hand, in the tabula Lor- . ,
1’

ordering. In order LO a’.~iri a sorting o~eration, t?. e cartis are in boLh op-

eTILicng .arran~ed in Cne order, tiard i+l precedes ,caw? i, but in operation 4

erznci~;: of R3’s j.n cperatim 5 is carried out irl such a way that the G col-

,.
umns of R! 3,nd the 6 columns of !?: ~

“e -,, ,
shmld have the same decimal point posi-

w. !,
.’

< Lj. on, Tncref ore, when card i belongs LO one decimal vc.p a:t5 card i-l to

.
mother. a ,Iifferent type of trsn~fer must be made than when both cards i ad

.,,,; .,,

, ,i-1 belcrn~ to tne same decimal sro ‘~.
F

‘This is xcompiisned by transferring ‘“
,. L>

3 of card i-l : : :on that cnncrcl sit;latio~jfie next. iG tie last G digits of’R
14, ;$,%

,., t.o (card :,. i’i~e X-@nCh, in 49; cin be used tolct:vate the selectors, three , ‘
/

oftilch are needed. sJ.nJ# 4
,,

.reproti’~cer sometimeg fails Lo pick up a single” ‘
,-

... ... Lpunch, an”X”ig punched in column 41, on ail canis havin~ an’’X”in 49s It

is unlikely t!~at the regrcducer waul:i fail to pi?k up both X-punches or) the
r

sam card.
—

As ‘S;1L3W) in t$e .oiu~board dlagr&aO mgure,ll, selector 1 and 3 are

,.

.. !
,, ,.:~1 ‘+’y T- ...7”.,

:,, .

,!

—
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Figure 11
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abo activatedby
=@. ● ✎✍

the sameX--punchlbut throughthe=‘c~}}~del’!ay~~~t:Thus if neithercard
●.. ●**..

i havean X-punc~i,al1 three selectorswill be unselected!;5f’both cards

i-l haveX-punches,all threeseiectorswill be selected. The selectors

i-1 or

i and

are

wired scthat inboth of thesecmtrol situations columns35-40 of cardi-1 or dsck

1 are transferredinto columns44-49of card i of’deck 2. U card i has X-punches

but cwd i-1 none, selectors 1 and 3 will be selectedand selector2 unselected;

if card i has no punchesbut card i-l does,selectors1 and 3 will be unselected

and selector2 selected. ‘I%eyare wired so that in thesetwo controlsituations

columns34-39of cardi-l of deck 1 Rre transferredinto columns44-49of card

i of deck 2. For details,seoFigureU. Only thewirimg of the selectors~s

shownin this figure, The wiringtor the restof’the transfersis atraight-

fo.rwardand is not shown.All s-lhseqwntoperationsuse deck 2,

Operation5 - Tripleproductmultiplier.
n3

Computationof (Ri)~s read from columns

37-42intothe left hand co~wnents Couter; (~ 1)3 iS read from COIWS 4.4-49

into the right hand componentscountermandthe rate —IL_.”_ is read into
ai.$(firs)i+

the sumary counter. On the firstsail.tipiicationcycle, the contentsof the

righthand cw.uponentscounterare transferrednegativelyintothe lefthand

componentscounter,thusdiiferencingR; and Rs On the secondmultiplication
i-l“

31s is ~tiplied by the rate.The productcycle,the differenceof the R

w=aq-ciziz~q-[(’:)3- -1(R?1)3 is punchedin columns31.35.

sinceon the firstmultiplication cycle, the rightto left hand componwrts

countertransfermust be negativeand on the second multiplicationcycle,positive ‘

(inorderfor the multiplicationto be done correctly),a specialcontrolmust

be pr~~ded. This controlis accomplishedthroughthe use or the 2 position -

selectorof theX-skipcivice. This selector$when activaied,is selectedonly

duringthe firstmultiplicationeye@’..f?XW?XWWnf,?%l-$.mpulseis gottenfrom=. -- ~.. Ww - -..0- -.08●*9Sam-*
.00● ●.O.9 . . .m.

z

ee---
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differentpositionsis takencare of by making a correspondingshiftin tho

Lperation 6 - Sorter. Deck 2 is mrt.edintoascendingorder

threedigitsof v, columns31-33.

by the collatorwith the cardsof

Operation7 - Collator. The work

cards,whichhave been previously

This sortingmakes deck 2

the tableof Fl and F2.

on the first

readyfor merging

cards,deck 2P are mergedwiththe table

sortedinto ascendingorder on theirnrg~-

ment, a threedigitv. The mergingis suchthat the tableCW(Iprecedes the

Murk cb.rd;hencethe table cardsare put in the primaryfeed hopperand the

work cards are put in the secondaryfeed hopper, Thosetablecardsthat,do not

havea v thatmatchesthe v of any work cardare selectedout and put in stacker

1. The tablecardsare checkedfor sequence. Sincethey are supposedto

be in ascending order~ the low secondprimary hub is connected

stophub. SeeFigure 136

After the mergedtablecardshave beenused,theymust be

in theirproperplacein the t~bleso that theycm be used in

to the error

reinserted

the next cycle,

Tiliscan be accompl.iahedwith the same plu.gboardas was.used to merge the work

arid table cards if the instructionsto selectthe primary and secondary cards

are vliredthrougha selector. TJM2secondaryX-selectoris

vetedby the llX1lin W on the work cards. The tablecards

X-punchin column%. 5ee Figure13.

Operation8 - Multiplier. Interpola?;ionof F1. Fl is read

used and is acti-

shouldnot have

from the table

an

cards,interpolatedand the resllltpunchedon the work cards. This cm be

done in one run of the cardsthroughthe n.ultiplieri.fthe tbble entries of

... ● .* 99

F1 have no more than 5 digitsand tfij ‘&;t t].ffere~<esof F1 have no more
..** ..

. :...
tli~n 3 rii~its. This limitationetiD&fsO%e~&u~~.~*@a~dita first~fference

~ Fl are stored in the G ~I~ras a ,group~lt~pl~er
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unit i.rqxbe is
-.

enteredin the extreme right hand.~.~~t3.0n.I%f~.tbeU-&ltiplicarldcounter and the

last two digits of v,A v are read from COLWIS 34 and 35 of the work card

into the two extrew left hand positionsof the multiplicandcounter.

The calculatioltto be performedis Fl+~Fl~v. Fl is read into ~he

ri~hthand 5 positjonsof the multipliercounterand AFl into the remining

3 positions. In the followingmultiplicationthe firstthreedigiteof the

productdF1~v are computedcorrectly. The fourthdigit,of thatproduct

has addedto it the firstdigitof the productFl~v; henc.:it is not correct.

However,onlytilreedigitsofAFlav are needed;the errorin the fourth

digitonlyaffectsthe rounding. Cm thisaccountthe last digitof the inter-

polatedvalueof Fl will sometimesbe wrong. The product~Fl&v ffimststill

be addedto Fl in orderto conpletethe interpolation.To do thisFl is wired

frowtheffiultiplicdtiol~table (ithas beenmultipliedby 1) into the sumury

counter and QFIAV is transferredfro~.the prodLctscounterto the summary

counter. Thistransferis shownas negativeinFigure 14 sincein most

equationsof state~ F is negative. The fourthmultiply-crossfootswitchis
1

set on crossfoat in orderto delaypunchinguntilthe productsto surmary

countertransferhas takenplace. The upperhub of the secondcrossfootswitch

is wiredto the upperhubof the on settingof the second crossfootto sumary

counterswitchln order to }Jedt the swiwy counter to receive the hpulsee

fro~,the mltiplicati-ont~.ble.See Figure14.

Duringthe courseof a probier~,p ray vary by severalfactorsof 10.

Sevencard coluunsin deck 2 have beenall.otedto p, Fl and F2 in orderto

allowfor ttlisvariation. Of these severldigitsof p that are punched,only

5 can be significantsincethe tableentriesfrtmwhichp is corrqmt.edhave

only 5 digits. However,this does not producemy error,sincewhen p is
● me ● . . . ● ** :*

●OD - ● - : : :

l.argeJmall timeirltervdlsmust be.u-se~&ee 3.4~3FSnd onlythe first5
. . . . . . . . ..* S** **

digit:, of it contributeto the valu~~}OR.=e:,Wrm”p”i#.SrMll,larger time
, - - - - ---- ,=---- -

intervals are used, but the ~ts of p are then the righthand
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5 of the seven that m-e pup~~g~ ....~~. :Q@+:~ on this variat~m in P Is.*,.s0 ● 00 ● .*
similar to the control on=$~.~v>pey~-t$cp >0~ ‘Ihepressure table $s ~iv:ded

lntO severald8C!5u@~groups, idf?ntifid by x-pU?Kh@s ~n CO]urmS 73 and 760

These x-punches desi~nateintowhich 5 czra columns the interpolated 73 is

punched. ‘They are read from the t3bltacard and the selectors they activate

must rem-ah sPLsct&d until the last work card matched fiILhthat t~bk card

has been punched. The Wiring of suchan x-control,is shown fn J?@IIW 15,

where the X-punches in columr.s~0 and 11 of :hework cards are used to keep

the selectors activated. Figure lb shows thewir~n~~of the selectors to
?

accom.oljshthis control on the di;~ts of Tl punchd. ‘Fe }M’JP not found it

nece39ary to use &he full.capacity of th:g s.ystcm, so o~ly 7 di~its are shown

wired to the punch. Although in an actual problem Mc feat~r~sin E’:.8ure14,

Jigure15, Figure16 are Incorporatedin onc ~)l;.lgbo:ird,Lhe,y~-~v?been

wparated here to m%ke t’newir!ng wore eas<ly understood.

Operation 9 - I#ultiplier. ‘Theinterpolationof F% is the same 33 for PI&

exeept tkit~tdifferent card columns arc QSC4, In SO!TVprobl<m bFa is .5ma11

cm!pared to F1. Then iL is Lsua13y not nece>sary to tnte.-pol~te.Fz, m!

P= F1 + bFa can be computwl uvlthmt tlIe intermtii’~tepunching of Fa. Fa

s read as a group iaultiplierfrom the table car~, From the work card, b is

read ~nto the multiplicand counter anclFI is crogsfcoseclinto the left hand4

components counter,

CperaticnlG - Sorter. The Lable cardsare sorted out from the wcmk cards.

Column 1 can be used. Then all the table c~rds will fall i.nthe rejeet

pocket and all the work cards wiil fall in the pocket corres~ondin~ to the

problem number,

@per&tion 11 -Mult’Lp~ier. computat~.on of’ p~-l~, b is rmd into the m~lti-
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Operati.cn12 - Sorter. In the lia~if~~~a“<ff~r{ri$irkgOJJer~ti,onS done by
..* 9GQ●:*I9

the tabulator-summarypunch,numbdk$fhlx~bet% &c];-iand deck2 are needed.

:dso 2 card cyclesare neededto performsomeof the computation. So deck 1

is Iiiergedwith deck 2, the deck 1 card’aheadof the correspondingdeck 2 aard.

Th3.sis done by placingdeck1 in the feedhopperof the sorterand deck 2

on top of it. The cardsare sortedintodescendingorderon the card number,

Cohmls 3-5.

Operation13 - Tabulator-sw~iarypunch.

listed. R: - R~-land d~ are computed

computed and punchedon deck 1 of cycle

Information

arid listed.

n+linthe

from decks1 and 2 is

2Rn -
i

R~-l and dp~ are

summarypunch. Identi-

fication,rates)and R: are Funched on the new deck.

The tabulatordoes not have enoughtypebarsto printall the numbers

punchedcn the cardsand com~ted in this operation, The followingchoice

of item givesthe necessary information about the solution and includes “

useful checks on the calculation,

Qphamerical Type Bars

XYU.J2M

1-2

3-5

6-10

u

12-13

u-m

a

22

29

30-35

Item Printed

ProblemNumber

Card Number

Time (cyclenumber)

blank

time interval,4A t
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+.. . ● Gee ● .
. . . . . . ● “.’”.

36

3?43

Type Bar

1-5

6

7-2.2

33

14

15-22

23

24-28

29

30-36

37

38-44

45

.s ..0 ● 00 ● *O blank
W--* .

==. . 99 ::
● e :*S.●:.. ... : .:.q. :.”

:
Numerical~ Bars— .—

Item Printed

p-l
?- i

sign of R; -

if negative.

Fy (&’symbol

blankotherwise)

X in S8 (Cr cymbol)

‘;.1/2
blank

blank

Sign of dp~ (asteriskif
negative. blank otherwise)

It was not alwayspossible Lo have a blank S}pacebetween each item

or~nted, The itms for whichthisomissionoccurswere chosenso thatthe

leastcenfusion resultd$ e.g., the problem number and Lime are the same for

all cards and hence do nGt interfere very much with reading the card number,

Sometimes alphabetical characters are used for the problem identification,

and in the early stages of the problem the tire does not contain 5 digits,

Unly rarely does bi-112 have

Since dezks 1 and 2 are

i. The’X”in 80 in deck 2 ~3

7 clj@t3e

merged, there are two card cyclesfor each point

u#%@e@:clis?*fn&l& :ftfrom deck 1, All three
.~ ● .* ●

. . -=-
. . .

● . . . . .*C .:0 :** :*”

‘-

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



. . . .. . . . ..* “c.

. . . . . . ● 9a9”b

list-tabulate sw~tchi?sXYP set to t~>~lat-~%nc~”~’tii~~-~cycle is taken
. . ..* ●.”.=.. . . . .

C!%’Pry tWO C,3T”d C~C11?9 j hence,infork~f;n 6cnc%;I-ri&@int i is printed on

one line - first from the list cycle folhw~ng the prevfoustotalcyclearid

then,without the platen rriov.ing,from the total cycle, In the follmi.ng

ci19cu93fon, the card cycles are referred to in the folluwtngmanner:at cycle

sme~ the card frcmdeck 1 ~s at the upperbrushes’) at cycletwo, the card

fremdeck 1 is at &he lowerbrushes. The tetal cycle f’orthat point is taken

after the card from deck 2 passes the lower brusheslth~sgivestime for the

n-l
computingof 2R~ - ~t .*

The trickiestfeature●f the wiring is that for’the computing o? 2R~ -

Pi-1
R+ , m cycle 1, R:-2 Is read by the upper brushes and entered negatively
.

into a counter, On cycle 2, H? is read by the lower brushes and entered

:>ositiyeZyinto the game counter and alse into another counter, Thus at the

n-l
erxlQf cycle 2 one countercontafnsR; - Ri and the other centaine R;,

(% the next cycle (cycle 1 again)the firstceunter,on a cardcycletotal

n
:r%nsfer, transfers Rq - R~-l positively into the second counter ferming

.

~# n-l
i -Ri , ‘Thema total cycleis taken.clearing the comters. This op-

er~tion has, of cairsep taken threecard cycles and the fir~t counter should

ha;e kwn rpceivjng the Impulses from th~ next card at the time it was trans.-

n-1
ferring ?; - Ri iritethe second ccunter. This Difficulty is avoided by

n-1
us$ng twa counters which altcrr,atelycompute R; - I?i ,

p*r t,~~gc~~i~~;~tion twe &glc cycles of selector

●e d Period 2 and the other of period 4. The ene of

sim.~~lyby wiring an illpuhe frcm l@werbrush80 to the

operation are needed.

perfed2 Is obtained

X-pickupof a selecter.

#hen deck 2 passes the lower brushes, an’’X”’impulsecomes threughand activates

the selector; when deck 1 passesthe l~er brushes, n~’’xtrfmpu~ecomes throu~.

Therefore,.the selecter is selected ●n cycle 2 and is unselected at cycle 1.
.*. ●9* ●-

The p~ricd of 4 ia obtained b~~~oz~e;$in~ ~~e~ ~rush $Q tQ an”XmP.~ition ●f
=- -99 ●-- ..-.:0:00.*

a selector, upperbrush80 to”# ~f.that..ae}ef:o; pcsition, and the c of that
. . ..- .
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Cycle 1 selected - (80 LB is connected Lo’’X’’andnow canactivate
selectorfw next cycle. )

cycle 2 selected- (83UB is connectedto h!and canrot mw
activate selector ,for next cycle]

and repeat.

hubs

c ●f

This

inte

of thesegosit$cmsare cennect~ to C t+fa period 4 gelecter. ~hUS the

the period4 selec~*r receives an cycle 1, n-l
Ri , and on cycle 2, R;.

period 4 9elector (selector G) is used to enter R<‘-1 ad R? alternately
*

counters OA and 8%. The X-hubs ●f selector G are wirej 50 the 8A ceun!x.r

entry WM5the NX to the 83 ceunter entry,

●

to

In

n-l~o~~t.~rg8A my! 8B are used tO Compute ~~ - ~i , Camte:$ 811 19 used

compute 2R~ - ll;-~and counter W ~3 used to transfer ?? te the ww deck

the summary ?unch.

Md--wbtract impulses for the counterare timetiin the followingwayt

plug to C gives an impulse cm both times O and 2; a plug to C i.m;julsewired

2 impulsee~t of Xl a tim 2 impulse wired te a C hub of selector G givi;o

..9 9
. . . ..* 89

● .9.’. - - ~ . ● ●--- ●*::.9==: .
.=-. . . . . .09 ● ** 99” ● ’
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e- 90
.99

. . Qeo ● *****m

neededto contrcllthe counter~~~try$mpw~segr~~;~lector C, which operateson a
● m...* .QJ*

perfcdof 4,is used to contro>:th~~se~ -f%i the countertotalexit to the

typebars. If no selactoris used here,a back circuitwill resultand wron~

numbers will.be printed. See Figure 17 for the plugobard wiring. The item that

are listed and transferred are not shown in the wiring diagram, They are standard

tabulator operations, and their presence in the diagram would require so nany

lines that the diagramwould become almostunreadable.

X-punchesare transferredfrom thedecks of cyclen to deck 1 of cycle n + 1

by usingthem to direct● counter to g o througha convemien cycle, Then the

summarypunchcanbe wiredto punchan all’~.The counteris made

a conversioncycle by wiring the add-subtract impulsethrougha

activatedby that*la. The selectoris wiredso thatwhen it is

countersubtracthub is impulsed. Then if the extremelefthand

to go through

selector

controlled the

positionof the

counterhas no digitenteredin it and the CI ad C hubsare wiredto counter

balancecontrol,the counterwill go througha conversion cycle.

The sumaqy ~nch plugboardwiringdiagram@ also not shown, The totals

of counters4AB and 4CD nust be wired to a selector and the common of the

selector wired to the punch. If thjs is not do~ and a circuitconnectingthe

punchto both cmntors at onoeis formed,wrongnumbre will be punched.

‘THEORYOF VW NEIJWJNW METHODOF’TRMTINO SHOCKS(Wierls)—.. — -— 0

6.54 Intrc&xtion. _

It is well knownthat in hydrodynamicproblemsinvolvingcompressiblemsdh

therenay existshockwaves, i.e. , placesat wh$c~ the velcxity,pressureand

dens~ty are practicallydticontlnuou8* and at whichthe equations of Wler do

nti hold. The reasonfor this is thattheEulerequationsassumethe changes

in the material to be reversible,whereasat a shookwave gradients
..9 ● .m. ● 98 ● m

become s o Lmge thatthedissipati%~erfe&ts~({rti~~ity.heat con-
9 .-”

●* ●=-●**●-* ● **9’
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Therefore@ It WTJM in generalnot.make sense to zssurneEuler~s equatlong

the situation is different if one uses, instead of the differential equattons,

we know tiwre exi9t,sno solution of the differential equations. Any solut.icm

t.},ifj kind at /3 shock, There arefihowever. solutions of oscillatory behavior

atno.rdlngto von Neurra-nrlscan be regardedas a modelof the incresse of entropy

~.tdoes not represent.correctly the thermal behaviorof any reasonable sub-.

and an actual substance in more quantitative det~il.)andto derive eriberla

that!mav~~rveto estimate the errorin individual zases.

(*)
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whbre y is the position at tine t,-= e‘●oY “t~l%’~%?MV which. . ..- ..” ●=-. er” .=..- *.. .

would be :itx ii’the

materialhad normaldensity.p’i#-@~ssCF%;%li&& is tissumedto be a unique

functionof the specificvolumeV (reversibility).More preciselyv sta.nda

for the ratio of the volume to the normal volume. ~he norual densityis>o.

The differenceequationis obtained from this by choosing tinw intervals

At and space intervtilsAx, so that after neglecting higher than second

~wers of the intervalsizes,(89)becomes;

~ = ~+ (<+$F-’

Mhere n, i, labelthe tti.e

tn = nAt + const.

‘i = i~x + const.

I
/

and space ir~tervals:

(91)

We apply these e!iuations to the state of affairs we expect behind a shock,

wheretherewill be irregularfluctuationssuperimposed on a “macroscopic”or

mean motion, If our interval sizes are chosencorrectly,

vary little over one interval and over a few intervals we

acupic quantities as uniform.

As to the “atomic’!motion, or fluctuations, we shall

the mean quantities

may regard all macro-

assume th~t the

amplitudeis small. The limitationsintroducedby this assumptionwill be

discussedlater. We can thenwrite

Y; =

where the bar denotes
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? i - 27; + ~i_ =-
—. ———

( A+’

~.vi(”) ;

Solutions of this e(~uationcan be written

?
n
i

=Ae j(n@+iy) ,

in the form

j=i-1

where A,@ , y are Corlstants. Insertingthis in (94)m have

$9)(1- C09 = - ()J&g&_ dP
>O(AX)2

~ ~ (1- cm p)

It is well known that the factor

*4)

(9s1

(“97)

must be less tlian unityin orderthat the step-bystep solution of ($JQ)be

possibio. Indeed,it is evidentfrom(96)thatif 12>1, @,is imaginary

neLr~= ~, and hencethem are disturbanceswhichwill grow exponentially

with ttim, making the systeniunstable.

Otherwise, there will be N frequencies, where N is the

intervals in the region under consideration. The values of

these will be spread unifordy over the interval -~ to r

numberof space

Vbelonging to

9

If the l~near Equation (94]were rigorous, all theseo$cill.ations would be

independent.Since,however,the correctequation(9Q)doescontain terms of

higlierdegree, there will be a certainar~lountof cwpling betweenoscillations

wi~i.ch, given enough time} must produce some kind of statistiwd cwi.librhm.

For sbrong amplitudes, w},erethe terms of different degreesin the ampli-

tude are comparable, it is clear from dimensional arguments that the “mean free

patht’of the oscilhtions~ (i.e., tlie distance a wave travels before equilibrium

has essentially been established) that the oscillation is of the order of one

intervalsize,with a numericalfa$t%q.w~ic~e..~~.~~~o~with the prcblemof
.W.=: :.*--- -

wolvesi.n crystal lattices, One WG$$ .<@?>.L.~g & ●!.&ger than Unity. As the

n,eanamplitude is reduced and the~d~u’~~ia $~=~,~~k~”~,the mean free path increases
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effect extends over a greater dist.amcefor weakershocks.

We have seen above that we may expect statistical equilibrium to be es-

tablished except very closely bet~indthe shcck. TQ this equilibrium ordinary

thermodynamics is net immediately applicable, since ?Quation (%) is a difference

equationin time as well as in space,and henceenergyconservationdoes not

hold in the usual form.

If however,1<~1, the time intervalis negligible in ccm+arsion with the

spsce interval, and the e.~uationsare then esse~tial~ differential equations

in time. They are closely analogous to those for a one-dimensionalBorn-von

Karma lattice. Since the equdtions are linearand thereis a restcringforce

for each degree of freedom, it is clear that in equilibrium the thernal er,ergy

will be kT per cie~ree of freedorl,,or

%h=-kT
>0 ax

per-unit mass, where A+ is the number of degrees of freedom per unit length,

k Boltzmannts constant,and T tl.et.emperathre.

The m.it of teuqjer~tureis here arbitrary,sincewe cannotmeasurethe

temperatureof this fictitioussy~t~i by bringing it into therml contact with

d ny

For

other physical

convenience we

system, hence only the product kT has a definitemeaning.

cki~ose our units of temperature in such a way that

or the mass per interval,hence

‘th = T

J18in my other oscillating

(@

{1(30]

systm,, this-energy is on the average half

--- ,W =
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or

where \-

is tl~evelocity associated with the fluctuations, and the bar den+es the

statistical average,

Equation (lCX3jmay be regarded as a definition of T and allowsone to

estimateT in x individualcase.The potentialenergyper unitmass is

E (V) =

For smalldeviations,

E(V) = E(7) +

to secondorderinclusive,

(14%3)

(T-v) 2 (MM)

On the statisticalaverage,the fir~ttermgivesthe potentialener~ of the

mean densitywithout t.efiperatue,the secondterm vanishes,and the kst re-

pres~lits the poteritialpart of the t}ierml energy, hence:

‘()
-~ (V.V)2 = $ T

2%
dV ~

or

II
-1

(v-v) 2=yoT &

(195)

“i ~ is known~ nce and T can be found from (iol~,thisrelation can be treated.
dV

However, the equality of kinetic and potentialenergy,in the timeaverage,

holds for any harmonicmotionwhether in equilibriumor not. Hencethis test

merely verifies that the ~p~itUde9 of oscillationare weak enoughto make the

rid.ionessentially harmonic.

l$ecan now find the pressurecausedby the heatmotion. By expansion to“

(lm)

the mean densitywithout
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twperature, the seccndterffiv@.S~e~~”t~$~s~”$s the tkernal pressure. Hence
● *m.:

rml
:

●
::●:* : 9:. ● ,* ● *

)
The same relation can be derived in a different way. In general

P=-

whereF is the free

F is a sum over the

frecdorn,

Fi =

(109)

( 110)

energy per unit mass, and v the volume per unit mass.

different degrees of freedom, &nd for each degree of

- kT log Wi + CO~St, : 111)

where Wi is its frequency (in radians per second) anclthe constant may depend

on the temperature but not on V. Hence, using (99)

. —
>.’ TAx ~ b 10~ %

M
=- —— -.— .-—..—

the suriito extend over all

which has a total mass M.

M i ?3V ( 11%>

deErees of frecdon belonging to the region considered,

The frequencies ar~ to be found from (S$)wi.th

P
~.lM)

If I is small, the right-handsideof (96)isalwaysWW1l, hence@ is a

small angle and the left-hand side can be rcqd.acedby ~

the frequenciesis proportionalto J I
dp

,=
~nd

—
.,,
Vi = fi ‘dp

IJ z

@2* Hence each of

( 114)

Hence Lll termsof the

tu the number of intervals

in a mass M, i, e., to
. . .== ,.* ● ✝

✎✝✎ ● ● ●
.W*..- ----
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Inserting

Thi9

resulton

/

%Gi) ?“’: ;:: “:”... ...- -.-.. . .@@C=**

&
-. --w ● .9* ● *

Noa)c ‘ ::. ::”;!se ● ** ● 8* ● *D ● *8 ● * (m)
?

ea-
e=. =

this in (llZ)we obtain“~~a~n tm:~c ‘“*

derivation is of interest since it shows the dependence of the

the relation (U4),which is not correct u.nlew 1 is SJXJJ.

We my reasonably surmise tkmt, for our present purpose,

garded as small as long as (114)is gubst~r]t,i~~y correct. To

solutions of (96)have been plotted i.nFigure 18 against 1 for

1 can be re-

test this, the

different angles

@ . It is seen that all lines are straighti.ngood approximationup to 1

= ~ and in view of (97)LMs uleans that in this range all frequencies are
2

proportionalto
c1

dp
d~ ●

For 1 z ~ only the uppermostcurvesbeginto bend,

And wiLhout further investi~ation it is not possible to estimate to what

extent this would ~ffect our conclusions,

~Q~oniot Relations.

Consider now a shockrunningintomaterialat rest. (Thiscauses110

essential 10ss of generality,} Let V, be the specificvdumej PI the pressure

ahead of the shock, and

Then the first Iiugoniot

whereu is

U the shock

and must be

u=

A *

assume thereis no thermalmotionaheadof the shock, .

relationis

u(l-7/vl) (116)

the mean velocityand ~ the mean specific volume behind the shook,

velocity. This relationonly expressesconservationof material

satisfiedautomaticallyin our model.

The other two relations:

P - p= = >*U2

and

(W)
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Figure 18

Frequency as function of 1 fm vW@W

ratio of wavelengthto spat hg
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Then, by (100)and (109):
2—-—

and wit}lthis ~bbreviation, we can

1

solve (120) for pth:

$ (P@ (Vi-m -’<0 [Em -’
p~h = —. ——-

g - * (VI-T)

and

(I23)

(124)

The thermodynamicpropertiesof the modelare unLiipcti~nt as long as (~)ls

SEtillcompared to the pressure p(~). fitthe same time (MXi)aUows one to

estimi~t.ethe amplitude of the fluctuations to be expected”bmind a shockof

given strength.

For this ]Iurposeone ri.ayeither comparethe average pwssure

pressure belonging to the average voluue ~ or use the mean square

fluctuation,which,using(321)anci(1OC)(101),is

For strong shouksit is evidentfrom

ratio whichcannotbe exceededeven

by the condition

with the

velocity

(1$6] a

(l=)that there iS a lmting compression

for an infinite pressure,and this is given

As g depends on the volume in the final state, it is most convenient

the lifititin~ compressionby giving t~~.hoi~h~~.y~l~~meV1 for which a
.*~e= - = : : * .. - ~= . .. . *

c~n be retichedin a single shuck:.. : .*. .“. ● *9 .:. :** -.

v; = 7 + 2C.(FT” *“. ;*” :.: ●=:

Giiiimi:-

(126)

to express

(127)
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7 for air,

Figure ~ shows the thermal pressure for air, StartiJl~ at normal

volume, For cmparison,the “cold’I ~r~ssure, p(v),an~ the ~orrect

thermal pressure, a calculated by Keller, are also shown.

It is evident frcm this figure that, whenever the t}~ermalpressure

amounts to an appreciable contribution to the cold pressure, it is

considerably in excess of the true value,

Table 6,5-4 lists the thermal prezwres for air for various values

of Vl and V.

Frwi these

obtained by the

values, the mean amplitude of the fluctuations was

formula

ii-i= Pthg pv=

I dV

which f’ollQwsimmediately from (lO@, (lOU)and(12%). Since for a

harmonic oscillation the root mean squttreamplitude is ~ tfies the
w

maximum amplitude, we can define a rtinimumvolume that wou~d be reached

for harmonic oscillation of the’ s~ime /JV.
–2

Th$s ia

—-—..

v =Vmin - //[2.==

See Table 60S-~

(X29)
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Figure 20
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6,5-5 Other .IU’-fects. .:”“~”~:”“~”~J”~“:
● S l?.s:= :*U

The analysis given in the j5re?Ho& $~c~f?m”~is in some ways still very

idealised, and we want to discutssa few effects that have been neglected.

(1) The fact has already been referred to that the discussion appljes

lml.yto small 1 , and probably in practice to 1<1/2. This probably

covers all application of pr~ctical interest.

(2) Moreover, we have assumed that the oscillations are always in

statistical equilibrium, In fact, all oscillations arise at the shock

front, and it will take them a finite time to get into eqllilibriu.?n.

This means that there will be a region behind the shock front in which

there is no equilibrium. The extent of this ragion is inversely p-

portional to the temperature,since the establishment of equilibrium

depends orIthe cuupling between different degrees of freedom by the

te]*msof higher order in the amplitude of’the oscillatiione..This effect

may cause errors if the extent of the non-equilibrium region is compar-

able to the distance over which the dynamical variables change apprec-

iably.

(3) In thediscu=ion given above, we have assumed harmonic ogcillatl.ens,

which is correct only for small amplitudes, When the Whermall! pressure

exceeds the “coldtlpressure this is no lc~ngerjustified. As a result the

thermodynamic properties of the system may differ from our description at

high temperatures, and in particular the limiting compression may be

appreciably affected. On the other hand the limit of applicability of the

method will rexmin unchanged since this refers to the condition that the

thermal pressure is negligible, which means that it must have small

amplitude.

(4) Conduction d’ energy. In the physi::~.~~p]micationsofmost interest
9 ● O* S ~ : * ●.- *QO

heat conduction is usually ne~l;gf$~%,a:~,a~,.a}~~ratemodel therefore
.9 -----*

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



❑ W, c’.

s: ..*-.= .0 0 “.:---- --* .. . . -

at the shock front. In our uiod~i??fe~~&tl.~$ &$ini.te heat conuuctiv~ty
s.. : ● *

==9 : ::
carried by the sound waves and Ii.rriYfe&IW3??Jy’”bjrthe second-ord;r terms

which limit the free run of such waves, The ‘hem free pathn of the wows

is CIirmntd.cmillyof the order of the interval size, multiplied by a function

of temperature

some error due

is than small}

which is large for

to this effect for

this will not lead

low temperatures. Hence, one may expect

weak shocks. However, as the heat content

to appreciable errors, In any case, for

any shock strength this effect can be made negligible by a generous choice

of the number of intervals used.

(5) Changing interval 8ize. It is often convenient in calculaticlnsnot

to make all intervals equal but to use groups of smaller

where more structure is required. Consider the boundary

groups. Physically, the two parts of the material ought

intervals in regions

between two such

to be in equ~librium

for equal temperature, i.e., for equal energy per unit mass. However, in the

model this does not correspond to equality of temperatures as defined by (log)

since the latter is measured on a conventional scale, Xn the model} the two

groups of points are in equilibrium if the energy per degree of freedom is the

same, which means different energies per unit nmss. What we have done corre-

sponds, in effect, to using difl”erentvalues of Avogadrols nwiber in differ-

ent parts of the material,
,,

Suppose, fcr example, that a shock is movirigthrough a range where the

interval size is ax, and that.a short distance behind the shock it is r-

duced to 642, Then, as soon as the disturbances have had time to travel

back to the region with the smaller intervals, an equilibrium will be approach-

ed in which the energy per interval is the same, so

the small intervals will be twice as high as in the

~.5-6 ~l~catlon to S~heri@ Problem.
● 9~ ... . .:● ● =● . ●

M important class of probl&3 ;ori?+r~~e~i;,{
e- :00 9*==-..-

‘fhenwe have, in phtCe Of (~). .. ... ...:.=:: ,“..=..

that the temperature at

larger ones.

/
with spherical symmetry.
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(130)

where R is the actual distance from thq centers and the independent variable

r is the original distance between the point considered and the center. If

we are to obtain the linear equations for small disturbances, we must bear

in mind that the mass contribution to tha free energy comes from oscil~ations

with wave lengths of the order of the interwi. size, and that, for any reason-.

able choice of interval, this is small cnmpared to the distance from the center.

Hence If we write again

R=~+~ (X$1)

where ~ represents the

rapid than that of ~.

undisturbed motion, the variation of
? is much more

Hence we find:

(X32)

Here ~ should be r$garded as Mxilly constant. If the calculation is carried

out with constant intervals in radius, this leads to an equation of the type of

(’$$).It is still t~e th8t upon a change h vdum each frequency is pro-

C
~ and hence the formulae of Section 6.5--3 still apply.portional to
dV

However, in”adctition$thefrequencies v~ryw~tk) R, the position of the

radial element, and thus we find a dependence of free energy on pos~tim. This

means a radial force.(1per unit mass,

and, in view of ($$2] “

.“* (135)
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Udng (Ml,) and(100)!
=* ●** ● ** ●*9 ● D*..99 ● *: *9:0 ●*..● :.● : : ●: ::

●*. :..●*
2g - ‘“”

G=- —
Ryo

%1
(136)

Ii’g Is near i/2)which is the case for a considerable range of values

of 7 for air,

/.DoG = - Ptj~R (3.37)

If the true premure varies, for example, as the inverse radius, the true

pressure gradient ip - ~ , and thus the relative error in the acceleration

i8 of thf$ order of ptJ@t i.er$ the.wune as the relative error in the pressure

itself.

t3&g comPa&&f#l ,QJ&JM&&ul at~.Wtt

In the I.B.M. solution of the problem of a spherical blast wave, the

von Neumann method of treating the shock was not used; conditions at the

shock front were treated s@arately by the Hugoniot relations,which gave

data ticIbe used as boundary conditions in the I.B.kL solution. However,

another problmz tbt of a P3LUM blast wave in airt wao treated by the von

Neumann method. One would expect that this problem would give quite clean-

cut restita~ since there 19 no change in interval size and there are none of

the effects of the radial problem.

Figure 22 shows, for three mass points, the specific volume as a function

of t%me, Since the period of

one tQie interval$ the curves

quantities at f$xed time, the

and the curves are not clear,

this oscillation is considerably larger than

8hOW the motion quite clearly; for the dynaralcal

period is of the order of one mase interval,

It is clear that the motion is fairly hwmonic;

represent the mean volwne of the shocked

material minus the maximum amplltmde of the shock,and the curves of Figure

i?l should be applicable. We g@t:
..99 ●*. ●89 ●=

.’a 9 - ● .*
: . .-. .:* ● ~9.*~~ ● *..

●0 -:.:=*●:0 ●** ●-
*
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-%’=%l-+-,.. ..z—SCUJTTON OF THE T3”MEWPFXT&$~tj ?’@lC&71QTYA”TICJN
9 :-= ●:. : ::●:O :.. .0

S. Goldberg and J. Xemeny

7e1 MATHEMATICAL FORMULIITIONOF THE PRCQLEM..— ——

If one

absorbs and

is given by

considers a system of particles moving in a materialwhich bo~h

9catter9, the distribution of Lh.eseparticles in spate ad time

the Boltzwnn Equation:

vhere

n(r,fi ,t):number of particles (per dnit vnlume] at point r, at time t,

moving ~n the dfrection given by the flirevtioncosine
F-

made with the rad~i]g

vector~

v =velocity of the particles,

~=the collision probabill.typer unit @th of length,

I+fzthe mean nlunberof particles emerging per collision.

As an example of a

3ider the follouir!g; A

sy3ten. Depending upon

problem to which thts equation L$ applicable. con-

known dfst,ributionof neutrons is introduced into the

the geometry and material construction of this system,

the n$~tron distribution will

tributioriis not stationary.)

of such a neutron pop~latiori.

grow

The

The

or decay in time. (Provided that the dis-

Boltzmann Equation (1) describes the growth

asymptotic solution for (1) shows tkt the

tit
population grows as e ● We Want to f’ind* .

We mu3t first reduce equation (1) to a form more suita!ilefor numerical

solution. To do this consider the erad:er~tIn (1! %ken along a given dir-

ection described by the coordinate q. The equation then reads
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Integrating along the direction ~ from initbl point ~ ~ to a final

v A t is of course the distance the particle travels in a given direction in

the A t, provided that it suffers no col~isiti. Uder the tmngfomtion

‘$-t
/ =sv At,

Blquatlofi(4) is now in the form which can ‘&sily be transformed for num-

ertcal computation, We want to treat this as a two-dimensiOnal probhI i

therefore, we shall assume spherical.symetry.

t~me (A t). The details of this procedure will be outlined in section 7.3.5Y
J..

and %# are then functions of r~
P

, a%i these inte!rwl values. We can easily

find these expressions with the aid of the follming diagram. Cur problm $s

spherically symmetric so that we need consider & equation along one radius

9*. 8 ● 9* ● =* .*

only. ●W* ● ● ...0 :.::
● w ●9 w ●* ● ●. . . ... .:.... ●:,:..W*

we 900 ● 09 9 9

- 9 ● w-m. . . ●**. .-m-..,- -,

>>
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/

M application of the

angle indicated yields the

I.&uof cosines and the law of sines to the tri-

equat10IM

(v A t)2 - &VAt/u,

formulaet

br=

where

R =

It must be

o~erat:ons onyy,

(5)

remembered that 1,B,~ machines can perform arithmetical

and therefore we must make further simplifylng assumption

to be able to carry out the,operations indicated in (4)0 We first a~gilme

that the berm n(r -%r,~-5~,t -At) is a linear combination of

~(r,y , t-At), n(r,~~A+l~t -At], n(r~Ar,~ ,:t-At)amin(r4Ar,

/#k A/u, t-At). Here, as in the following paragraphs, the + or - sign is

adjusted so that we should always get an interpolation,n~t an extrapolation

formula. That is the +sign goes-with A r(A#) when S r (bfl ) is neg-

ative, the - sign goes with A #&C’t’U$wh”l #’!r(’$# ) i.s positive,
.’ ( :. .. . .

NOW
.

. . :.9.
●. .:8 ● *9wee● 9O==

90 ●we .9s ● s
, . ● ●m. w 990
. . * - ● :“: “

.
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.s. .:: .: **”

M(f/u-5/u)t-N)=b;

[ 1If#]~(f:;~i;;i‘;:;)~:ii~-)$#l)h(fl~,t-At )
● .

● *:.**● :.. m ::
and

[

●*. :..*.

n(Y-$Y, p”$#,t-At)=A~f )fIYl M(Y~;f:j~6~)t-At)+(Af- l$fl)h(fl/J-S#,t-At~

Using these two interpolation formulae one easily derives the final equationI
—

l$y$~l W @AY,# fA#,t-At)+~~;~~-l$Ai~h(%$Y)~-$~}t-At)= ~YW ~(ftAy,/utt-At}+

‘AY~~j~l ‘A’ n (Y)#*,A#,t-At)+ ~Ay-‘%y#Af* n (fl#, t -At ) i6?

Having chosen the radii and angle values and intervalsA r,A~ , A t]

the four coefficients above are fix~ constants for given r and .P Since we

assume that the density remains ccm8tant,CT is a known constant in any particu-

-0 vAt
Lar material. Since e is a constant for the problem, the evaluation of the

-UVAt
te~ W(V-$Y,#-2p,t-A~)e in equ.atlon(4) is ri%uced to finding the 3UIUof

four prcducts, Equation (4) now has the form:

y(~4.4,t)= ~f h(fi Af,#t A/, t- At)+ Q2h(Y$Af, /,t-At]+ U3n[f,#*A,4,t-At)+

U4 h(f)/4,t-At) + ~~) VA@$&dM (f-S$f)#~t” sAt) e~~~~~s t.~~

where the al are the coefficie%s ~~ (6), each multiplied bye .

We turn now to the simplification of the last term in (7] involving two

Integration , with respect to/J and then with respect to the a-mdliarg varle

able S. We denote the integrslJ’(
“h ~.S$f)~’#.5At) cj/U’ bY

F(~-S$~,l-5A~). ,In order to&ahate
I

we assume

becomes a

;(r+A r,

‘ /’k(f-s$~,t-Sd)e“*vAtsds
(*)

t-A t). Just as we der’jvedthe interpolatlm formula (6), we can

demonstrate that
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We may use thi~ general Integration formula to integrate (S) after substi$ating

(91 for $i({-56f)t-Sfd) , l’!lis reduces the last term in (7] toexac$ly the

There remains one further problem. F~uaticm (10) tells us that in

order to get n(r,fl , t) we must know n at t- L3t, and ; At t and t -A “t.

Tn the problem as stated above we have n and ~ at t-A t, but we do not have

; at ta (i,e.P wc know the distribution up to time $-A t, but we have yet to

find it for t.) Finilingit for t is precisely our problem. We have to make

the further assumption that ; grows exponentially in t:me at a given radiua,

i.Q, ,

Xt is then easy to see that ~(r,t) may be expressed in terms of known quan-

tities as follows:
72

In the following

I,B,M@ method used in

7.2 I,B.Me

sections ,adetailed description will be given of the

solvinglk~uation (10).

PRclcmIm.EGENWi.ALUJ1’LJNE.— —--=--M- —=--

Our problem presents itself to us in the form of given distributions

n(rofl ,L), ik(r,t-At), and fi(r,t),fromvrhichwe have to calctilaten(r,~ ,
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~(Y,t+At)= J(,’h f,#,t+At)d#
where ai are t“rlcfunctions of r and/ only, and the ~ signs are fixd for

Peach r$ ,

All the quantities up to time t

As statal previously,we assume that
r-

are known, but we do not have ;(t+ A t).

-1-

n(t-Atj

Therefore we start out by squaring ~(t), and ‘hen we divide the square by

li(t-A t). (The deck cmtaining these %’s has only one card for =ch r:

hence, it is known as the small deck. The large deck contains the n‘s, having

one card for every combtnatfon of r and~ .) After the small deck has gone

through operations 1 and Z. we have all the needed n’s and ~’s, and we have

to multiply them by the fixed ai’s. Uhenever there is a problem involving

a large number of multiplications in each of which there is a factor that does

not change frcnnone cycle to the other, the masterdeck method can be used

to great ;dvaatage. (This method was also used in matrix-multiplication,

which ii described in another chapter of this volume.]

From the qwtton for n(r,~ ,t4L$t} w see t~t a ?art~~l~r n(rt~?t~

may be used for the computation of several of the n(r,
P

,t+At), n(r~Ar,

~ 2A$, t+A t), etce ~erefore, n(r,~ ,t) is mltipli~ by several d~ff-
r

erent aie

multiplier

multiplied
_.

Q

The shplest way of handling this is to use n(r,fl~t) as a grCUP-

for thuse ai. The~a as da n~t change, and the same ai are al%%y.;

&J thc~same n’s. Therefore, we make up a masterdeck ~n which each

card has an ai(r’,~ ‘) and whjch has the r of the n which will mnltiply the

~i, ~~?n W= can combine the magterdeck (a~+,) sorting on r and~ . We pUt

the combined deck through the multiplier,punching ain on each Mastercard,
9*8 w ..9 wee .=

A s~milar ~rocedure is foll&&~fo!’*t~~.s~a~~ ~eck w~.ththe fi’s. The master-
,. .=.* .*..*O .*

deck is thenre-s~rtedon r’ .qndw&l>,(@.that.&~e eight ~rcducts whose sum. * s . m - :=: = .
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r’,P “ m every ai correspondsan r an&an r’ i Go .ai(.i=l..,~) correspond

an r’ wlda#’alSG. 2’k.ati9,if

Hence,durlrigmultiplication r,~ are important, while durin~ the sumiiingof

the products r‘,# ‘ become significant,

The products are added up in the tabulator, and at the same time a rum

large deck is summary punched. This new deck contains the n’s cm which we

have to perform an integratimt

E(~t+At )=~ln(~#,t)d#
.

case outwei~hs the accuracy lost.

j“~(~/,ttAt)d/ = ;A/ ~(~-f,t+~t)+Zn(Vfll+ A#,t+At)+,,, ,,,,,,
-1

.

1+2Y?p,l-fi#)t+At) +D(K f,t+d

In our next operation we sum
[
n(Y,-!j t+ At)+2n(~-!t~,tt At)+,,,,+ h(Klj~+Atj

1

(Fox-a discussim of the~l/2)A# term s~~ the next section~o This ‘9 Perfcrmed

on the tab:lator, and at t~o same time a new small deck Is su~y ~wnched.

Finally N, the tc~talnumber cf’nwitr~n~, i3 c~m?Ut@.

(3 rz A r) is independent of time. Hence we have a fixed deck containing r

and fsr2A r]. We merge this deck with bhe mall~ck and perform a grotip-
●*e ● ... ●9* ●w

multiplication,
.“9accumulating.h i~lf~e &&a~ }~~nter.
. .W.. .:..** ●*=:**=*

● ✎ ● .O
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● OO * ● **O*”

This sectfcn was meant onljjas a b~~q$ outline of Lhe methcde ● **r,”,*. ●*e.. .*- .
used. There are

problemup, how to get ~(t) and ;(t+At] into the same

?i[t-A t), and how to handle the 1/2 A/ factor. These

Section 7.3. In $ection 7.4 we will give an outline of

In Section 7,5 we will give the plugboard diagrams, and

plugboards.

XO~DLHiE FOR WARTING A lW3HiM_—.. .—S..-—

us assume that an actual problem Is given, We

deck, how tO keep

will be discussed in

the eight operations.

a descript~on of the

shall still,‘for the

s~mp~icit,y,restrjct ourselves to the spherically symmetric case, ‘/+

shall assume that~ and f are known at all points.

&r first problem is to choose t~e interv%19A r,A#, and at. (For

the actual problem it i3 not neceggary to know v crA t. WP can use VA t

imtead of A t, and ~/v for~ ,) ‘#ewmt to choose vAt as

in order to shorten our work. But we want it to take several

neutron to pass through the r~terizl. A reasonable value for

large as possible

cycles for the

VA t IS about

1/s0 the radius of the material. Next we ciir:os~Are It is best to !-avetk

same A r all thrcugh the material; but if that would require tc~omany intervals
●

and if there is some less important materfal near the otikide, it may be better

to chcoae a larger interval on the outsfde. A r shou7d be of the same order

of magnitude as &J but preferably smaller than ~ . Once>Ar is chosen we

have a pod check whether v A t is reasonable. Y “At ~hould be smaller than

A r, otherwise we get toc little d~t.ail, One pcwsible choice of the%e in-

terwals is to let Ar = l/ZG az-dvAt:l/2Ar.

Our next problem, choosingll., is more difficult, We have to make

sure that#l~#l$~/.( ● ( ~s~ is always ~ A r, since A r ig at most vAt < r. )

For large r,~fl will be small{ but If WEIhave too many intervals, fcr small

%~-c~oow.”tffk?SIkill.estA). first. ?Jechoser,$~ can easily exceed A#.,.o .** ●
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Im-$f.
.9

. ..0 iez -*vow *. :...
● * ● 0* . ... ● . **

.

choice ofA~ ●)

(though nut all

one A/ for each

● ✎ ✎ ✎ ❞✏ w-m

For small r we6ee@~et~u~~,&e~~f the sane values of#

of them, to increaseA#), “Sealso insisted cm getting only

r, ‘fnerefore
Y

nad to be a multiple of .25 and a factor

of 2. This left us A/= .25, .S, 1, 2, with 9,5,3,2 values of#respectively,

“men

that

next

many

Ap =“*25 turned out to be too small, we tr~ed .5, etc, It turned out

our two inside points had to have
P

x2, the next one had~ = 1. the
P

P’
one A ,S and all the others ~db . .25,

P
There are, of course,

other ways of choosi~ Ay2; but this seems as reasonableas any.

Once we ,%ve vAt,A r, and A , we can compute the ai. This is a
P

siu.plebut laborious process.

a7 =

%? =

With the aid of these formulae we can compute all the a,(r$,~’). ThenA

we want to kr.owwnat r,
P

equal for each ai(rf,p ‘).

,..

.;

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



‘tieare now ready to prepare the m33tenfeckse We punch i in column 1,

visable to keep .3e?V(?r3~CO~i&l of the m>stemiecks OE hand. S~nee we have tc

puncning cm op. 4, and read~ng in op. 6J, we can use ~he mlsterdecks several

times,

A t equal Lo 1, He called the center 1, ~he tiex.tpojnt 2, etc. we also

replaced# = -1 by 0,# .-.75 by 1, etc. ‘,o,enever a reference is made to

not very food from tkds point of Viewe The best we can say is thxt n ~s a

We also prepare a fixed deck aecotiing to the layout.
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center wlereA# cl-,anges~; and tc replace a i(i=~$...,8)

get in operation 0:

AL+44’n(r’,

by hA/ ‘ai.We then

which is correct. In operation “/we get:

which is also correct. But we must remember that our M stings show $ ~ 2 ~~

instead of n.

Next we face the problem of having to add both ai~(t) and ai~(t+ b t)

terms in the same n. We found the following tc be a fruitful approach. In

cycle t- Qt. we compute all the ai~(t)jbut we save the ~~(t) anda~~(t)

until tt!enext cycle. In their place we use the cards saved frcu the last

cycle. nlen at cycle t tt.etwo sets of ai~(t) will be avaiiable from the

last cycle, the two ai~(t+AtJ are computed cturin~the cycle. Thus aTR(0)

and a ~(0) have tc be done befcre tti,eprcblem is started.8
Then in cycle one

we

to

by

in

proceed normally lMitiloperation 5. In operation 5 we sort orIccIlumn1

separate the ai on i. Here we replace the decks i=~,tiand replace them

~E(U; and a8~(b). The two decks rerr.oved.wilibe used in a similar manner

cycle 2.

It turns out that the same trick will salve the problem of keeping

., ;(t-llt). We have ~(t) on the small deck. (This was cc’mputedin operation 7

of the last cycle.] What we need is ;(t) of the )as~ cycle. Therefore we

put some dw~ a~ cards into the masterdecks, one for each r, These have afl=~..

Let us say that we are running cycle t, X(t+&t) will multiply this a =1 ,
7

and the product card (togetherwith all %/:. :8) p~ be removed and saved for ,
... ●.O. v = . .

the next cycle. In operation 6.e~ ~+~st ~e~tr~~ler this ‘Jproduct’!onto an
●9 9...90.*. ● *. ● 9

n card, ti~din operation 7 tc t@.Frep.~ Qaterd..=.‘Thiscard will be used in
:.: -. ... .
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from adding them up with the regular products,

A very useful tricK is to change the “in uhick.ref’’ersto problem nG.1.

It is best tc change it to 9. For example,if we are running probi.em1, repiace

the al by a9. This enables us to separate the masterdecks from the -11 and

large decks in operation 5, and at the same time to sort the ai on i. TM s

also ensures that the a8 will not be the last ai in any of the groups of eight.

cards; this is necessary for plugboard o to function correctly.

Operation 1,

Operation 2,

Uperation b.

~peratim 5.

Purpom: to compute ?iZ(t).

Procedure: We take the small deck and put it through the

multiplier with plugboard

Purposo: To divide #(t)

n(t+at) approximt.~~ly.

.
L*

by ~(t-zlt)p i,e., to compute

Procedure: We put the small deck through the multiplier

with plugboard 2. Be sure not to use a blank leadcard. (On

a blank catd.QW oauses trouble.)

Purpose: To qerge deck i’orthe main multiplicati~n,

Procedure; Sort masterdecks on column 1.
‘eparate al-a4

‘rm a5-a8”
Merge lar8e deck with a -a on columns 2-4 (be

1. 1+

sure i.argedeck precedes masterdeck,) Merge small deck with

a5-a8 on columns 2-J, (Be sure small deck precedes masterdeck.)

Purpose: To compute the products.

Procedure: Put the merged decks through the multipliers, using

plugboard 4, and using a leadcard with an ‘lX~!in x.

Purpose: To separate=~~er%p%$~o~~?m large and small decks.

To replace

To sort the
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Operation 6,

rJperatim 70

Operation 8.

board 6 in t+hetabulator,

~ le~dcard with t+ A t In

Purpcsei To ccmpute ~(t+

and 64 !R the sumnary punch, use

COISO }-2, and ar. ‘~” in 40,

A t)e To transfer E(t). Totrat.m-

cGh. 1-2. (The fixed deck precedes Ghe srriilldeck,) PJt the

merged deck thnm~h a multiplier using plugboani F?c Use a lead

, x-l. -2i~lepurpos~ of this o~erakifm ia.%wc.cm?utc n (t) on the mall deck.
. . ..- -== . .
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in X-1, and in the dividend in X-2. (Figure 2)

Then a.-!/3 Is picked up in cal. 1 (i Of S.i),selector D is t.urncdcm.
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,

Figure 4

Numbe\s—-, -..

--------- Con%rD3

Print——

—.-— s. P.

99 ●9. ● om . . . .
=. . . . .**.
. . . . ● *
..* . . ●:..
.-. . .

99 w,. 9.0 ● ** ●:. . .
●

s ● ● **.W.. , ● .“: ““: ●“:
s=== _*. *

--

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



,* . . . ● *9 Wa: ●:. ●=*
..== *= 3*
.. ==:..
=.- :Q*O
..=

. . . . . ●:=
● ● ** ●

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



.

=. .** *-*.●☛✎✎☛✝

APPROVED FOR PUBLIC RELEASE

APPROVED FOR PUBLIC RELEASE



39, the counters

XW7 The main purpose of’this operation is to perform the trapezoidal
X-7-S

integration on n, The coefficients of this integration are 1, 2,

?-)”*’*2,~~ Therefore the cards with “X~lin 17, 19 are added once,

the others are added twice. This is done completely under the control

of the different ‘~X’l~s.Let us suppose that

of~,so that we have three cards with “X’l~s

ively. On each card n is read into selector

we have only three values

in 17, 18, 19 respect-

B. On the first card

this selector is on, hence n is read into 8A. On the next card n

Is added into 8B (throug};selectors B, C),and into J3C$8D (through

selector 0). On the last card the n is added into counters 8C, 80

only (through selectors B, C). Now we have all the necessary n’s in

counter 8A, 8B, 8C (tlD)$and they are sumed by total-cycle-trsnsfers.

On the last card 8A transfers to 8B, and On the first card of the next

group (after the next n has been read into the counter 8A) 8B

transfers to 8C and.8D. Then a total is taken giving us ~ in 8C,

The difficulty in this procedure come up on taking a total. We

take a totai on the first card of the next group, and therefore 8A”

clears at the wrong time. We avoided this by not taking a total on

8,i; instead we clear it when i.ttransfers its in3”ormation.(This is

done by the b wires from

In order to complete the

an “X” in 1’7,(F@res 6

counter total exit to counter list exit.)

last group, we must use a runout card with

ati 7).’

The ~(t) is read into counter 6B,from which it is listed and sumary

punched. For simplicityls sake the problem number is just listed and
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MIsCELLANEOUS PROBLEMS IN NUMERICAL CALCUI..ATION

1).Flanders and P. Whitman

8,1 SCIUJHON W EQUATIQNS (Flanders)

8.1-1 lntxoduction; Quadratic Formula

A common problem in numerical computations is: find the solution or

solutions of a given elquation. In certain cases this can be done by an explicit

formula, but in many @ses it must be done by approximation or by a succession

of approximations.

An equation which can be solved explicitly is the general quadratic equa-

tion

ax2+ bx + C aO

where a, b, and c are given. Its solutions are

x

usually called

can be reduced

the types

(1)

(2)

the ‘quadratic formulatt. An equa&ion

to the form (1) by the substitution z

6

such asaxL+bx2+c=0

2=x. For equations of

3ax+ bx2+cx+d=0

andax4+bx3+cx2+dx +e=O

900
● .* : : ●=.

. *.*.-m..’

.@
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VIIj =:2 { “ : :.: ●.
899 ● 9* ● *.*. . . . . ● ● ***.*

“fy$;~t”~n~${~~ice it isthere are also explicit solutioM
● ●W:. .a. ::

easier to apply

● ● *m ;

~-i”
“sAAL—ss..—”.—”.—”_ ..—.

L, Z, Dickson, First Course in the l%eory of Equations, New York (1922)
pp. f+5-54*

J. B. Rosenbach and E. A. Whitman, College Algebra, revised editim,
Boston (1939) pp. 265-271.

F. R. Rider, College Algebra, New York (1940) PP. 203-208
(or ahnost any other book on this subject).

.—— - ———.—

a ,method(such as Newton?s method,about to be described) which is applicable

to equabions generally.

8.1-2 Refioving Known Solutions

However, after all but two of the solutions xl, x2, -—, ~ of

Xn+alx n-1 +
a. ---+an=O

have been found, the remainhg two can be found by dividing out the factors

(x - ~) corresponding to the known roots. For this purpose, however, it is

advisable to find the “known)’roots to one or two more figures than desired,

to allow for rounding-off errors, etc., in the division.

The division is most conveniently done by ‘synthetic division”(2),

(3)

~--————-”———— m. —-. .—

RosenMch and Wit-man, 10C. ci~., pp. 229-230.

Rider, 10C. cit., pp. 176-1’7’7.

.—— —– .— —

For example,

1.337x4 + 68.927 $ + 1082.I!+56Xz+ 5115.k98 X- 3333.796 = O (4)

has the solutions xl = 0.578303 and x2 = -26.8019 (see below, Section 8.1-3).

Divide these out successive&:

1.337 + 68.927 + 10W.456 + 51.15.498- 3333.796 /.578303
**w ● ** =-

. 773z 40.Y@7m~”+;$49i2’$27;~333.799 “
---.—.,. ... ....- -., ----- .e. ..s., ● . . :“*.*:-* .:*. .:*.D.-.. -. ..

~’w

(5)

(6)
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. ...0 9*.
99.9**
99 **m ● ● 00 : :

1.337 + 69.70~2 + U22.’76~ +:3:#+.~5;’

. 35.834.34-907 .679ti5 *:* k64e:?9~*
_.——-.. ————.. ...... ..”-,-..,.. . ... ... . ... ........ ..... . - .. ...

1.337 + 33.86606 + 215.08505 0

●
●

● ☛
●

.* o::.9“*..

‘fl

[=26.801$’ (7)

(8)

(9)

Here line (7) represents

and the dividend for thk

in lines (7) and (9), to

stiltaneously the quotient from the first division

second division. l%at the remainder comes out zero ,~

within an amount which can be accounted for by .

significant figures‘3) and rounding-off errors, shows that 0,5’78303and -26.8019

As discussed in Section 84-1, we have sometimes carried more figures in
the computation than are, strictly speaking, significant.

—. r
are indeed solutions of (4), while the remaining two roots must by (9) be

solutions of

1,337 X2 +33.86606X + 215.08905s O, (lo)

and so can be found by the quadratic formula (2); they turn out to be complex

numbers. .

8.1-3 Me@od af Successive Interpolation

(C?nemethod 4) of finding the solutions of an equation - the equation need

(4)
Scarborough, 10C. cit., pp. 174-17’8.

Whittaker and Robinson, 10C. cit. pp. 92-93.

not be of the type (3) - is sometimes called the “method of false position~,

but might more appropriately be called

Suppose the equation to be solved is

f(x) = o (5)

—

the method of successive interpolation.-

(It)

(5)
An equation g(x) = h(x) can te written in the form (11) by transposi.ticn.

First one must get a royg~.jc@a c$ ~ha:l~cation of the solutions, If
.9- ● e-. :::*. .
9=-- ● *

●
. .:.:9* ● *.. .:0 ●**

Nj@m@ih--
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nothing is known

instance, x = O,

signs then there is a solution between b and c, provided f(x) ‘iscontinuous

~n this interval. Trouble my be encountered in case there are two solutions

between a pair of successive integers, but bhe trend of the values of f(x)

will generally indicate wha 5 Is happe.ti. ng here, and one n,ay graph the function

or take some non- ifitegral values of x to sepsra te the roots. ‘Iherl,too, thj.s

method locates only real rootis, but in numerical work we are us&lly (but not

always) interested only in real nunbers. With the known values f(b) a:~d f(c)

we I@ interpolate. to finti what value of x will give f(x) s 9; actuallyf Jr

course, this is inverse inter pola~ion (Section 2.1 -L)j but simce we use linear

Interpolation (Equation(7)) no distinction between direct and inverse inter-

polation need be made. Let, ~s denote by al t&e interpolated value of -x. Then

compute f(al} , I! ifiterpolation were exact, then f(al) = ~; but Shce we u$~fl

an approximation (linear interpolation) it can only be expected that f(aj) will

be near zero. Ihen using eitlier f(b) or f(c) - usually, whichever is smaller

in absolu~e value - and f(al) we may per for,m a ~fimilar interpolation Gr extra-

polation to get a new approximate solution, az$ Then iriterpolatin.g betweeil

f(al) and f(a2) we

rapidly except for

question.

get a~, and so cm, Once well sLaPteU, the prcmess converges

functions whose graphs have sharp bends near the points

The process should be continued until two successive ai have Lhe same

to the desired accuracy.

Me first approximation al m+,if degiredjbe ob~fi~ed by graptling the

in

va1ue

calculated points (e.g. x = O, t 1, t 2, etc.) and readi,ngoff the value of

x for f(x) = 0, rather than by interpolation as indicated above. ‘.This met?{od

.,. . . ● 99 m ●
.“*.“? 5-8.

—.

.-

a sharp bend in the ~ici.nity.

linear interpolation in the
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special form used here: c . . . . .= ; . . **. *3** :.**=:. . . . . -

%+1 = ~n+ ~an

(12)

8.1-4 Method of Iteration

A slight variation of the previous method is applicable if the given eq,ua-

tion can be written in the form x = f(x) ● Then once a first approximation al

to the solution has been obtained, say as in Section 8.1-3, then successive

approximations can be obtained by az = f(al), aj = f(a2), etc. This process

Iconverges(6)if fl(x) I<lforx near the solution,

76)
—— c

—

Scarborough, 10C. cit,j p. 18’7.

8.1-5 Newton’s Method

j.p.o~~er method, known as !iewtonls method(7) , applies to any equation,

f(x) = 0, (u)

Provided that ft(x) can be found and is not, zero at or near a s~lution x = r.

Scarborough, 10C. cit., p. 1’78ff.

‘Whitkakerand Robinson, 10C. cit., p. 84 ff.

Granvi.lle, 3mithj and Lorgley, 10C. cit., pp. 131-132.

If ai is an appraximtion to a solution of (13), then as the next approxi-

mation we have

f(ai)
ai+~ s ai -

m

or

(14)

(U)

-“iiaaiib
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Cnce a reasonably accuratq fir~t”~p~f~~a}~o~”$as been found (for instance by
● mm.. .

● :ma

the same method as in Section %.X:3] tlfi:~~l%;~;s general~v ~fves quite rapid

convergence. The approximate error of ai+~ is given

~“’” _

(8) by

—— .. ._ — -—

Scarborough, 10C. cit., pp. 182-183.

..—.— .....____

(Llaf)z m If”(x) I
Ei+l~ —z

2 /f’(ai)l
ai~ X: ai+~ (16)

In practice, however, one simply continues naking new approximations by (14)

or (15) until two successive ai agree to the accurt,cydesirecl.

For exarplej as in SectioriF?.I.-3, it is found that

~.337 X4 + 68.927 X3 + 10!32.456~ + 5115.498 X- 3333.796 z O

has a solutiGn approximately equal to 0.57. Using (15) we have

f(x) = 1.337 X~ + 68,~~7 X3 + 1682.[356X2 + 5115.49~X- 3333.796

(17)

fl(x) = 5.346X3 + 206.781X2 +’2164.912 x + 5115.498

Trial ... ..—

f’(a)

*
[La . - ~,aa

Wlution

1—..

0.570000

(j●y490t3

0.M5193

0.105560

-53.366

6U8.

.008315 I

——

2w—— —., .-—

o.57t?315

0●33MM

CI.1534.16

0.311855

0.080

6438,

-0*043-J

—— . .

3
r

0.578303

0.33L43L

o*1931+04

0.111846

0.002

6h3t?.

-c!.c$3

0.5783G3

Mr3Mrly, - 26.8019 is fou@.to:’bg a-&31jiti~fi:A method of finding tkie two
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other sol.utiono was shown in ~ect$cti~-$.l~-2~. 1$~is to
.: ● 9*= .:0 ● ●:. :.*“.

be observed that there “

will necessarily be much cancellation h- the c-~mputationof f(a) since we wish

it to be zero. Hence it my be necessary to car~ this computation to many

figures, taking a as exact (i.e., an exact number used as a trial value; of

course it is nob the exact solution).

On the other hand, f~(a) will generally not involve much cancellation and

only a few figures of it.are needed for A a; indeed, once a has been four~d

to a few figures, f~(a) will be known closely enough and need not be recomputed. “

It may be rerarked here that any fairly close approxfition to f;(a) may be

used. This will not affect the fact that successive approximations converge

to Ltieanswer, provided f?(a) is not near zero, though it may make the con-

vergence slower.

8.1-6 Checkir&olut~ons.— .—

The test of the correctness of the solutions found is whet},er ttleysatisfy

the given equation. ,

finerror in one step of either !iewton}sm,ethodcr tk.e method of successive

ir.terpclaLion9,unless it is tlIelast trial (whjch should essentially a~ree

with the ~revious trial), will not vitiate the fir,alanywer but only result

in slower convergence to that answer, A systematic error (the

each trial) may,on the otk!erhand,lead to an ir.correctresu2.t.

same mjst.akein

8.1-7 Choice of Method

‘9), those outlined above are generaUyfililethere are still other methods

.—
~’

..——

Scarborough, 10C. c~.t.,CkiapterX.

Whittaker and Robinson, lCC. cit., Chapter VI.

—. -...

adequate and satisfactory.

If f!(x) can readily be fousxizarl~~f~x”)~~dff(x) are not difficult to..9 . . . . :.
calculate nwmer~cally, Nev#t~!.s,&et~ti.<3~~4.i%fi8.1-5) is generally preferable.

99-w 8..0- ●.=, .9.9 ● ● .8.. ...”---
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If ft(x) is hwd to find or rnu’ah.mfm~ di$fi$dt ?O compute numerically than
90. C*:::

f(x), then the method of succes-si~e-irlte~~o~aOt~&(Section 8.1-3) is prefer&ble.
.

The method of iteration has the advantage of involving a little le3s calcula-

tion at each step than the other methods, which is worthwhile if there is reason

to suppose that one will not lose much in rapidity of convergence.

8.2 CURVE FITTING (BY LUST SQUARES) (Mltmn)

In fitting a curve to a set of values obtained by experimental methods,

the ttleoryof least squares is sometimes fcund useful. lhe general form of

the problem of curve fitting is that seversl corresponding values cf two

variables are measured experimentally, an appropriate equaticn is assumed tc

give the relationship between the two variables, and then the parameters of

the equation are determined.

The simplest type of equation to use is a polynomial, “rhedegree of the

polynomial can be detemndned by differencing the values of the dependent

variable. If the second differences are fairly constant a parabola may be used

for the approximating curve, if the third differences - a cubic, etc. Since

sone experimental error appears in each pair of measured values, one equation

cannot fit all points exactly, but the method of least squares gives the optimum

approximating curve(10),

(10)
J. B. Scarboroughj The Johns Hcpkins Press, Numerical Math. Analysis
(1930),p. 304 ff.

.. ....——.— —

The theory consists of minimizing the error between the fitted polynomial

and the points given by the experimental data by minimizing the sum of tte

squares of the errors at those points. Since both positive and negative errors

are assuned to occur in such a way as to average out to zero, the squares of
●9W ●we ●=

the errors must be used to @~I~~ iona~sG~lut>cnumericaln&ninxun.
---- -=--9 ●=9 .00we-99*-=
.==.. ..0 ● ●.== .=.- . . .=.
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the supposed or measured value and ‘de true value; but since this error can

never be determined in practice, the Wesidual’t is found, i.e.,the difference

between the measured value of,the dependent variable and the value of the

function found frc,mthe computed

can be shown that minim~zing the

true errcrs.

parameters and the independent.variable. It

residuals is equivalent to minimizing the

To take a general example, suppose we have n pairs of values, (xi, yi)

measursd experimentally and we wish to fit a parabola to these points, We write

Yp = Al + AZ xi + A3 Xi2 (18)

using the notation yl to distinguish tk,ecomputed values from the experiments]

values of y. The problem now is to solve for the Als,

1 in (18) and dividing the equation by yi, we obtainl’;ritingYi for Yi

Xi
,2

1= Al ~+A2—.
Yi Yi

+A3~
.

(19)

W then multiply kquation (IY) by the coefficient of each of the AIs, in turn,

and sum the resulting equations, obtaining the set.

These equations allow us to solve fcr the desired

(20)

parameters (usually by rule

problem.

--

.
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=* ● 9* ● e* ● ** **9 ● * .I%at the Equations (20) g~~; }he~+recj$i~d~r~sult can be shown theoretically,
(11)

~
● **.. ●:O : ●** -**9*

Whittaker and Robinson, Blackie and Son, Ltd. (2940)- The Calculus of
Observations, p, 210-211.

‘“—~
and so this process does not appear in the numerical work.

The theory, however,
should be utilized whenever possible as a ct.eckon the numerical work.

For
instance, the residuals are easily computed by taking ri = yil - yi.

.\—_
Hence, z..ri can be computed ai.rectly,

Also

—. ..—
/’ ri ZA1 ,l_~---- + %>: ;; + A3 J- ‘i2 ‘–”. —-~1

““- Yi

The separate sums on the right appear in the existing computation, and so we

have a simple ck.eckon the correctness of the c.slcul~tions. Cne should expect

to find that >_ri s O, wit.hjnthe desired accuracy. The AIS of cwrse, may be

checked by substitution in (20).

Another, more exacting check, is performed bjjtaking the sums

and alsc

Then the following two equatiom forrria check, since the left hand sums appear

in the previous computation(12),

112)
Whittaker and Robinson, Blackie and Son, Ltd. (19&O) - The Calculus of
Cbservatior~s,p. 211.

—.—

2xi ‘- xi2
“—= z..~ 6iYi
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Whittaker and Robinson, Blackie and SGn, Ltd. (1940) - The Calc~us of
@observations,P, 234.

.—

12
\ ri2 =

7 Y~ . Al;—
/_ — ——

It may be tfit a certain

SG that instead of the pcints.

y~l. UL-A2>_y.i1*2.L - 1 xi2
A3 : Yi

Yi’ Yi “Z-

“weightI!~hould be attached to each ob3eNati@P.

(xi, Yi) we hAv@ (wi xi, yi). The points might

simply be weighted according tc position (wi s & Gr Wi Z A), The residuals
Yi Xi

are affected linearly according to weight. The Checks shouM be fGrmed using

the weighted residuals, for instance, the last formula would read

8.3 HARMONICANALYSIS (Flanders)

It is sometimes desirable LG represent a periodic function f(x) in the

fora

f(x) ~ a. + al cos x + a2 cos 2x + a3 COS3X + ---- + bl sin x + b2

d sin 2x + &j sin 3x +

This subject has been ex!hausiivelytreated

..—

in studies of Fourier series;

a good description of a practical method for finding the first few coefficien~s

(1’!+)*
is given by Scarborough and Whit@ker and Robinson

—
~14)

—.

Scarborough 10~’i~!~~j P?.’$~@@5* .~ , ~= . :. . .
. . .s. .:.● e-

Whitjtakerand R;binson, loc.‘==“:l~:j Chapter X) especially the insert
facing p. 270. :’. ~*” ,=. :.. : : .“.~. ..=

——.—-—–- —.— - .--
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8.4-1 Settin~ Up Numerical Computations

When a mathematical problem is to be solved numerically, there are three

principal parts to the job: ~ “setting up” the

tions, and checking the results.

‘l%eseiting up may be simply a matter of

problem, performlng the calcula-

speci.fyingthe numerical operations

‘to be perforned, or it my require manipulation of the given formulas or equa-

tions to obtain a more convenient form. Iiow detailed the specification of the

operations must be depends upon the qualifications of the computer; a style

suitable for computers

Section 5.1-9, Chapter

to make the directions

with limited knowledge of mathematics is shown in

5. For the sake of flexibility it is usually advisable

detailed enough to be readily intelligible to the least

well-trained computer in a group. However, for some problems this is impmcti-

cable and they must be given to computers who can do the work without detailed

instruction. In the process of setti,ngup a problem, it is well to watch for

things which look inconsistent (for instance, a regular procession of powers

with one exception, or a cer~ain combination of ex~essions repeated several

times but once slightly different) and check their correctness with the person

providing the problem.

In many cases, especially in

person who sets up a problem must

are to be substituted in formulas

numerical integration (Section 3.1, Chapter 3) the

also deterrnirrewhat values of the argument

in order to achieve a specified accuracy in

the answer or a suitable distribution of answers. In some cases an inspection

of the formula will irdicate the proper choice; in other cases, it is necessary

to substitute a number of values of the argument and inspect the results to

see whether more are needed. Wniilar remarks apply to the determination of the
. ... . .90●*. ●0

number of significant”fig$re~.to~b{.ca~~ied if the constants in the formulas
.-= . . . . .
=. ===.●= ●o. ● ●9 -=

.. .*O ... 8 9 ●-- .O.. . . . ...*...-
.-eP. --

---- -
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are exact, It my be pointed ol!tthat.it Z.S‘W@Ely advisable to carry an extra
● *O*.Zea ::

●:* :99**
figure or two so as not to have”t~”~o;ry about rounding-ofl errors.

8.A-2 Carryin< Cut the Calculations

If the set up is adequate, the corqmtation itself should be simple though

~rhaps tedious,

84’-3 Checki~ the ‘@lculz8ions
.

Checkit-,gthe work is t.t.elast item but by no means the least. ~.e set up .

should be ci]eckedbefore start,i.n~cor.putation;presumably this will be dor.eby

a ~r~cn cOmPetent to judge the r.e~essarytechnique so our remarks will be

confi~ledto the checking of t!lenu,wrical work.

~a~ically there are t~ic) types of CheCk: self-consistency of results, and

ccmqwrison of two inde~ndent calculations.
d

. Whether results are self-consistentmay be determined by seein~ whether

?.hieanswers (for varicus v“aluesof the argumer.t) run in smooth s~uccession. Gross

kdividual errors (but not systematic errors) my thus be detected at a glance;

to detect smaller errors one may take the first, second or higher differences

(Secticn 2.1-1) of the answers and i~ispecttheir regular~.t,y. ‘me effec~ On tjhe

differences of an error irione value Or the f~~rictionmay be seen from

~o:~owi[lgt~ble* ‘ltiusjthe first variaLion in the differences appears

Hrie where thie errm occurred, but the greatest variation is opposite

with greater suhscr~pt,

If it is observed Ll!atthere is arierror, but it is not appvjnt

the

orI the

a .Z

where

this error lies, o~w may take differences of the terms or facLors which enter

directly ir~tothe computation of Z , and of the item which er.terinto tl,ese
.

terms or factors, and so on. If the differences oscillut.ein one step A and

not in the itemswhich enter into A, then presumably the errcm lies in the

cotiput&tior;of A. 9*9
●*9 ●. .

● ☛
✎

✌✎ ✎✚✎

. . 9*9
-..—.- .-

-:

● ✎☛☛ ● ☛☛ ● ☛

✎✍✝✍ ●
✎ ✎ ✎ ✎ ✚
✎ ✎ 9 :* ● .
. .
. . . .*9 ● 99 =*
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5
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8

I

‘1 ‘8 ;

——. . \— ?-—— —~
It.will,be observti, for instance, frcm the above bhle tit an error of

one in the last di.dt in Z 6 (which mi@t easily ar~se from m.mi?ing off) will

came an error of 6 in the last ffuye of ~
.4

~ , as well as errors of
8

oFposj.tesign in adjacent values of ~ b ~ , so this nmch variatim in A , ~_ is

T-1otsQmificant*

Even though the &lfferenc% indl 00 ix

done ini?opendentlyfor Rt 1east one value

systematic errors.

In some casee the chink of self.comigtency is not applicable; for insti oe,

if there are too fow values of tilear~ent the differences of the answ~ till.

not afford a sufficiw% test; if the valuw of the ar~at are n& eqmuy

(15)spaced, It is difficult to get adequately comparable dif’forences
4

?15)
—

——. ● ☛ ● **9*9989*
. . . ..—.— ---—

.= . . . . .
—.. _ 9
—-
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alt,err~~t,ive is ~n s2me respects 7,ki~ORt. iC&ll.y more attractive, bl; t the fcrmer

is usually more ,nract,ical.

In c~er to obtain real.ly“independent” corrijut.at,iors by Lwc coriiput.ers, it

return]ng,incorrect work to tk.e computer for corr~ctior,. However, tliis Fro-

com~uters to compare figures now ar)d then to avoid further computat.ion with

incorrect V21UCF3, ik~s irlvolvesscme danger tkjatone will cGnvince the ot.ber

of L}& correctness of allincorrect value or operation; the exterit of tf.e darjger

uepencs on the cl;aracterof the computers .

specify thie rkeordin~ of values at interir(e~iiatesteps rather than only the

A methjc.dir,termediaLe beLheen se]f-consistency and con:putati.w by two

inclepe@erlt.methods is that u$ed in checking .sLep-t;j’-sLep i(lt.egrat.iw of dif-

ferentiaj equations (Sect ion j .1-3,C:hapttr~). }:ere one compute3 .anew value

ii .nistake.

m f(;w fid~ and ep.dg in the way of practical cot-,sideratjons my be merjtionecl,

ill work shef’ts should be Iabelled so tt,at they can be identified mor,ths

La Ler when memory is dul1ed.
... 9 ●8W ●=* ●*

.’99-:= =-
~ persor,who give% $t,e~wom:ufins &oup a job may not,have m.LJc~I iI.-~&awha t

● .
● m ●:* ● 99 .*9 ● 98 .=
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job the fj.rsttime instead of ha”vi;~” to d%”i~h~~r agaic,

‘:/hena great many values of a very complicated functicn must be used in

com~utations, it is convenient to calculate chosen values of tle furiction and

to cM3n a graph. The values are chosen so that they are simple to compute

witthand also so tk,atthe curve is sufficiently w@ll defined, e.g., a hump in

the curve requires more points than would a fairly linear sesment. The computed

points are then plotted and the scale cl!osenlarge enough to allow the desired

number of signi.f~cant figures to be read from the graph. A small amount of

accuracy may be sacrificed ti this method, but a great mass of detailed comput-

ing is obviated.
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